Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2319663121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547059

RESUMO

The structure of dislocation cores, the fundamental knowledge on crystal plasticity, remains largely unexplored in covalent crystals. Here, we conducted atomically resolved characterizations of dislocation core structures in a plastically deformed diamond anvil cell tip that was unloaded from an exceptionally high pressure of 360 GPa. Our observations unveiled a series of nonequilibrium dislocation cores that deviate from the commonly accepted "five-seven-membered ring" dislocation core model found in FCC-structured covalent crystals. The nonequilibrium dislocation cores were generated through a process known as "mechanical quenching," analogous to the quenching process where a high-energy state is rapidly frozen. The density functional theory-based molecular dynamic simulations reveal that the phenomenon of mechanical quenching in diamond arises from the challenging relaxation of the nonequilibrium configuration, necessitating a large critical strain of 25% that is difficult to maintain. Further electronic-scale analysis suggested that such large critical strain is spent on the excitation of valance electrons for bond breaking and rebonding during relaxation. These findings establish a foundation for the plasticity theory of covalent materials and provide insights into the design of electrical and luminescent properties in diamond, which are intimately linked to the dislocation core structure.

2.
Plant Cell Environ ; 47(4): 1141-1159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38098148

RESUMO

Intercropping is a widely recognised technique that contributes to agricultural sustainability. While intercropping leguminous green manure offers advantages for soil health and tea plants growth, the impact on the accumulation of theanine and soil nitrogen cycle are largely unknown. The levels of theanine, epigallocatechin gallate and soluble sugar in tea leaves increased by 52.87% and 40.98%, 22.80% and 6.17%, 22.22% and 29.04% in intercropping with soybean-Chinese milk vetch rotation and soybean alone, respectively. Additionally, intercropping significantly increased soil amino acidnitrogen content, enhanced extracellular enzyme activities, particularly ß-glucosidase and N-acetyl-glucosaminidase, as well as soil multifunctionality. Metagenomics analysis revealed that intercropping positively influenced the relative abundances of several potentially beneficial microorganisms, including Burkholderia, Mycolicibacterium and Paraburkholderia. Intercropping resulted in lower expression levels of nitrification genes, reducing soil mineral nitrogen loss and N2 O emissions. The expression of nrfA/H significantly increased in intercropping with soybean-Chinese milk vetch rotation. Structural equation model analysis demonstrated that the accumulation of theanine in tea leaves was directly influenced by the number of intercropping leguminous green manure species, soil ammonium nitrogen and amino acid nitrogen. In summary, the intercropping strategy, particularly intercropping with soybean-Chinese milk vetch rotation, could be a novel way for theanine accumulation.


Assuntos
Camellia sinensis , Fabaceae , Glutamatos , Fabaceae/metabolismo , Esterco , Leguminas , Solo/química , Camellia sinensis/metabolismo , Glycine max , Chá , Nitrogênio/metabolismo
3.
Acta Pharmacol Sin ; 45(7): 1349-1365, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38504011

RESUMO

Ischemic stroke is a major cause of disability and death worldwide, and its management requires urgent attention. Previous studies have shown that vagus nerve stimulation (VNS) exerts neuroprotection in ischemic stroke by inhibiting neuroinflammation and apoptosis. In this study, we evaluated the timing for VNS intervention in ischemic stroke, and the underlying mechanisms  of VNS-induced neuroprotection. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min. The left vagus nerve at cervical level was exposed and attached to an electrode connected to a low-frequency electrical stimulator. Vagus nerve stimulation (VNS) was given for 60 min before, during and after tMCAO (Pre-VNS, Dur-VNS, Post-VNS). Neurological function was assessed 24 h after reperfusion. We found that all the three VNS significantly protected against the tMCAO-induced injury evidenced by improved neurological function and reduced infarct volume. Moreover, the Pre-VNS was the most effective against the ischemic injury. We found that tMCAO activated microglia in the ischemic core and penumbra regions of the brain, followed by the NLRP3 inflammasome activation-induced neuroinflammation, which finally triggered neuronal death. VNS treatment preserved α7nAChR expression in the penumbra regions, inhibited NLRP3 inflammasome activation and ensuing neuroinflammation, rescuing cerebral neurons. The role of α7nAChR in microglial NLRP3 inflammasome activation in ischemic stroke was further validated using genetic manipulations, including Chrna7 knockout mice and microglial Chrna7 overexpression mice, as well as pharmacological interventions using the α7nAChR inhibitor methyllycaconitine and agonist PNU-282987. Collectively, this study demonstrates the potential of VNS as a safe and effective strategy to treat ischemic stroke, and presents a new approach targeting microglial NLRP3 inflammasome, which might be therapeutic for other inflammation-related diseases.


Assuntos
Infarto da Artéria Cerebral Média , Inflamassomos , AVC Isquêmico , Camundongos Endogâmicos C57BL , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estimulação do Nervo Vago , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estimulação do Nervo Vago/métodos , AVC Isquêmico/metabolismo , Microglia/metabolismo , Camundongos , Inflamassomos/metabolismo , Masculino , Infarto da Artéria Cerebral Média/terapia , Neuroproteção , Camundongos Knockout
4.
Environ Res ; 252(Pt 2): 118813, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574985

RESUMO

After the second industrial revolution, social productivity developed rapidly, and the use of fossil fuels such as coal, oil, and natural gas increased greatly in industrial production. The burning of these fossil fuels releases large amounts of greenhouse gases such as CO2, which has caused greenhouse effects and global warming. This has endangered the planet's ecological balance and brought many species, including animals and plants, to the brink of extinction. Thus, it is crucial to address this problem urgently. One potential solution is the use of syngas fermentation with microbial cell factories. This process can produce chemicals beneficial to humans, such as ethanol as a fuel while consuming large quantities of harmful gases, CO and CO2. However, syngas-fermenting microorganisms often face a metabolic energy deficit, resulting in slow cell growth, metabolic disorders, and low product yields. This problem limits the large-scale industrial application of engineered microorganisms. Therefore, it is imperative to address the energy barriers of these microorganisms. This paper provides an overview of the current research progress in addressing energy barriers in bacteria, including the efficient capture of external energy and the regulation of internal energy metabolic flow. Capturing external energy involves summarizing studies on overexpressing natural photosystems and constructing semiartificial photosynthesis systems using photocatalysts. The regulation of internal energy metabolic flows involves two parts: regulating enzymes and metabolic pathways. Finally, the article discusses current challenges and future perspectives, with a focus on achieving both sustainability and profitability in an economical and energy-efficient manner. These advancements can provide a necessary force for the large-scale industrial application of syngas fermentation microbial cell factories.


Assuntos
Fermentação , Bactérias/metabolismo , Metabolismo Energético , Biocombustíveis
5.
Cell Mol Biol Lett ; 29(1): 81, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816685

RESUMO

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Studies have indicated that immune dysfunction plays a central role in the pathogenesis of sepsis. Dendritic cells (DCs) play a crucial role in the emergence of immune dysfunction in sepsis. The major manifestations of DCs in the septic state are abnormal functions and depletion in numbers, which are linked to higher mortality and vulnerability to secondary infections in sepsis. Apoptosis is the most widely studied pathway of number reduction in DCs. In the past few years, there has been a surge in studies focusing on regulated cell death (RCD). This emerging field encompasses various forms of cell death, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death (ADCD). Regulation of DC's RCD can serve as a possible therapeutic focus for the treatment of sepsis. Throughout time, numerous tactics have been devised and effectively implemented to improve abnormal immune response during sepsis progression, including modifying the functions of DCs and inhibiting DC cell death. In this review, we provide an overview of the functional impairment and RCD of DCs in septic states. Also, we highlight recent advances in targeting DCs to regulate host immune response following septic challenge.


Assuntos
Células Dendríticas , Sepse , Células Dendríticas/imunologia , Sepse/imunologia , Sepse/patologia , Humanos , Animais , Morte Celular Regulada , Autofagia , Apoptose , Piroptose
6.
Chemotherapy ; : 1-13, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38763139

RESUMO

INTRODUCTION: Abnormalities in splicing factors, such as mutations or deregulated expression, can lead to aberrant splicing of target genes, potentially contributing to the pathogenesis of acute myeloid leukemia (AML). Despite this, the precise mechanism underlying the abnormal alternative splicing (AS) induced by SRSF1, a splicing factor associated with poor AML prognosis, remains elusive. METHODS: Using strict splicing criteria, we globally screened for AS events in NPMc-positive and NPMc-negative AML samples from TCGA. An AS network associated with AML prognosis was then established. Functional assays, including CCK-8, flow cytometry, and Western blot, were conducted on K562 and THP-1 cells overexpressing SRSF1. Cell viability following 72-h Omipalisib treatment was also assessed. To explore the mechanism of SRSF1-induced AS, we created a BCL2L11 miniGene with a site-specific mutation at its branch point. The AS patterns of both wild-type and mutant miniGenes were analyzed following SRSF1 overexpression in HEK-293T, along with the subcellular localization of different spliceosomes. RESULTS: SRSF1 was significantly associated with AML prognosis. Notably, its expression was markedly upregulated in refractory AML patients compared to those with a favorable chemotherapy response. Overexpression of SRSF1 promoted THP-1 cell proliferation, suppressed apoptosis, and reduced sensitivity to Omipalisib. Mechanistically, SRSF1 recognized an aberrant branch point within the BCL2L11 intron, promoting the inclusion of a cryptic exon 3, which in turn led to apoptosis arrest. CONCLUSION: Overexpression of SRSF1 and the resulting abnormal splicing of BCL2L11 are associated with drug resistance and poor prognosis in AML.

7.
Anaerobe ; : 102900, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154705

RESUMO

OBJECTIVES: This study investigated the codigestion of corn straw (CS) with cow manure (CM), cow digestion solution (CD), and a strain consortium (SC) for enhanced volatile fatty acid (VFA) production. The aims of this study were to develop a sustainable technique to increase VFA yields, examine how combining microbial reagents with CS affects VFA production by functional microorganisms, and assess the feasibility of improving microbial diversity through codigestion. METHODS: Batch experiments evaluated VFA production dynamics and microbial community changes with different combinations of CS substrates with CM, CD, and SC. Analytical methods included measuring VFAs by GC, ammonia and COD by standard methods and microbial community analysis by 16S rRNA gene sequencing. RESULTS: Codigesting CS with the microbial consortium yielded initial volatile fatty acid (VFA) concentrations ranging from 0.6-1.0 g/L, which were greater than those of the other combinations (0.05-0.3 g/L). Including CM and CD further increased VFA production to 1.0-2.0 g/L, with the highest value of 2.0 g/L occurring when all four substrates were codigested. Significant ammonium reduction (194-241 mg/L to 29-37 mg/L) and COD reduction (3310-5250 mg/L to 730-1210 mg/L) were observed. Codigestion with CM and CD had greater Shannon diversity indices (3.19-3.24) than did codigestion with the other consortia (2.26). Firmicutes dominated (96.5-99.6%), with Clostridiales playing key roles in organic matter breakdown. CONCLUSIONS: This study demonstrated the feasibility of improving VFA yields and harnessing microbial diversity through anaerobic codigestion of lignocellulosic and animal waste streams. Codigestion substantially enhanced VFA production, which was dominated by butyrate, reduced ammonium and COD, and enriched fiber-degrading and fermentative bacteria. These findings can help optimize codigestion for sustainable waste management and high-value chemical production.

8.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256065

RESUMO

Our previous study showed that COPPER-CONTAINING AMINE OXIDASE (CuAO) and AMINOALDEHYDE DEHYDROGENASE (AMADH) could regulate the accumulation of γ-aminobutyric acid (GABA) in tea through the polyamine degradation pathway. However, their biological function in drought tolerance has not been determined. In this study, Camellia sinensis (Cs) CsCuAO1 associated with CsAMADH1 conferred drought tolerance, which modulated GABA levels in tea plants. The results showed that exogenous GABA spraying effectively alleviated the drought-induced physical damage. Arabidopsis lines overexpressing CsCuAO1 and CsAMADH1 exhibited enhanced resistance to drought, which promoted the synthesis of GABA and putrescine by stimulating reactive oxygen species' scavenging capacity and stomatal movement. However, the suppression of CsCuAO1 or CsAMADH1 in tea plants resulted in increased sensitivity to drought treatment. Moreover, co-overexpressing plants increased GABA accumulation both in an Agrobacterium-mediated Nicotiana benthamiana transient assay and transgenic Arabidopsis plants. In addition, a GABA transporter gene, CsGAT1, was identified, whose expression was strongly correlated with GABA accumulation levels in different tissues under drought stress. Taken together, CsCuAO1 and CsAMADH1 were involved in the response to drought stress through a dynamic GABA-putrescine balance. Our data will contribute to the characterization of GABA's biological functions in response to environmental stresses in plants.


Assuntos
Arabidopsis , Camellia sinensis , Resistência à Seca , Arabidopsis/genética , Camellia sinensis/genética , Putrescina , Plantas Geneticamente Modificadas/genética , Ácido gama-Aminobutírico , Chá
9.
Molecules ; 29(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38792147

RESUMO

The organization of modifiable and functional building components into various superstructures is of great interest due to their broad applications. Supramolecular self-assembly, based on rationally designed building blocks and appropriately utilized driving forces, is a promising and widely used strategy for constructing superstructures with well-defined nanostructures and diverse morphologies across multiple length scales. In this study, two homogeneous organohydrogels with distinct appearances were constructed by simply mixing polyoxometalate (phosphomolybdic acid, HPMo) and a double-tailed zwitterionic quaternary ammonium amphiphile in a binary solvent of water and dimethyl sulfoxide (DMSO). The delicate balance between electrostatic attraction and repulsion of anionic HPMo clusters and zwitterionic structures drove them to co-assemble into homogeneous organohydrogels with diverse microstructures. Notably, the morphologies of the organohydrogels, including unilamellar vesicles, onion-like vesicles, and spherical aggregates, can be controlled by adjusting the ionic interactions between the zwitterionic amphiphiles and phosphomolybdic acid clusters. Furthermore, we observed an organohydrogel fabricated with densely stacked onion-like structures (multilamellar vesicles) consisting of more than a dozen layers at certain proportions. Additionally, the relationships between the self-assembled architectures and the intermolecular interactions among the polyoxometalate, zwitterionic amphiphile, and solvent molecules were elucidated. This study offers valuable insights into the mechanisms of polyoxometalate-zwitterionic amphiphile co-assembly, which are essential for the development of materials with specific structures and emerging functionalities.

10.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3493-3504, 2024 Jul.
Artigo em Zh | MEDLINE | ID: mdl-39041121

RESUMO

Based on the processing and compatibility, this study explored the effects of components in Corni Fructus(CF) and Astragali Radix(AR) on plasma metabolomics in diabetic nephropathy rats. SD rats were randomly divided into four groups and diabetic nephropathy rat model was induced by high-fat diet combined with 30 mg·kg~(-1) streptozotocin(STZ). Histopathological observations of kidney tissue sections of rats in each group were conducted using HE, PAS, and Masson staining. Ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) metabolomics method was employed to investigate the effects of CF before and after wine-processing combined with AR-related components on plasma metabolites in diabetic nephropathy rats. After drug treatment, kidney tissue damage and interstitial collagen fiber deposition area in diabetic nephropathy rats were improved to varying degrees(P<0.001). The detection results of plasma metabolomics showed that 71 biomarkers related to the pathogenesis of diabetic nephropathy were identified in diseased rats, mainly involving linoleic acid metabolism, caffeine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, phenylalanine metabolism, retinol metabolism, and ether lipid metabolism. After drug intervention, 26 of them were significantly downregulated, with better efficacy observed in precision processed herb-pair group(P-CG_5). This study elucidated from the perspective of plasma metabolomics that P-CG_5 could improve metabolic disorders in diabetic nephropathy through pathways such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and caffeine metabolism, providing theoretical support and experimental basis for the clinical application of CF and AR compatibility in traditional Chinese medicine.


Assuntos
Cornus , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Metabolômica , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Ratos , Masculino , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Cornus/química , Astragalus propinquus/química , Vinho/análise , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo
11.
Mikrochim Acta ; 191(1): 40, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38110769

RESUMO

Based on Au nano-cone array (Au-NCA) and a three-segment hybridization strategy, a novel SERS biosensor is proposed for the ultrasensitive detection of the microRNA miR-21. The uniform, stable, and reproducible Au-NCA was prepared by the single-layer colloidal ball template method. Subsequently, the target was hybridized with sequence 2. The resulting target-sequence 2 complex was then hybridized with sequence 1 anchored on Au-NCA. Thus, a three-segment sequence complex was formed. SERS measurements can be performed without the need for complex purification and amplification steps. Due to the ability of miR-21 to perform specific complementary hybridization with two sequences, SERS biosensors have superior specificity for miR-21 without interference from other miRNAs. Under the optimal conditions, the SERS biosensor was applied and the limit of detection (LOD) was as low as 3.02 aM. This method has been successfully used to the detection of miR-21 in the serum of lymphoma patients and healthy volunteers. The results are consistent with the traditional test methods. Therefore, this novel SERS biosensor shows excellent clinical translational potential in the detection of lymphoma.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Humanos , Análise Espectral Raman/métodos , Ouro , Hibridização de Ácido Nucleico
12.
Aging (Albany NY) ; 16(7): 6135-6146, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38546384

RESUMO

Dysfunction of tight junction proteins-associated damage to the blood-brain barrier (BBB) plays an important role in the pathogenesis of ischemic stroke. Lifibrate, an inhibitor of cholinephosphotransferase (CPT), has been used as an agent for serum lipid lowering. However, the protective effects of Lifibrate in ischemic stroke and the underlying mechanism have not been clearly elucidated. Here, we employed an in vivo mice model of MCAO and an OGD/R model in vitro. In the mice models, neurological deficit scores and infarct volume were assessed. Evans Blue solution was used to detect the BBB permeability. The TEER was examined to determine brain endothelial monolayer permeability. Here, we found that Lifibrate improved neurological dysfunction in stroke. Additionally, increased BBB permeability during stroke was significantly ameliorated by Lifibrate. Correspondingly, the reduced expression of the tight junction protein ZO-1 was restored by Lifibrate at both the mRNA and protein levels. Using an in vitro model, we found that Lifibrate ameliorated OGD/R-induced injury in human bEnd.3 brain microvascular endothelial cells by increasing cell viability but reducing the release of LDH. Importantly, Lifibrate suppressed the increase in endothelial monolayer permeability and the reduction in TEER induced by OGD/R via the rescue of ZO-1 expression. Mechanistically, Lifibrate blocked activation of the MLCK/ p-MLC signaling pathway in OGD/R-stimulated bEnd.3 cells. In contrast, overexpression of MLCK abolished the protective effects of Lifibrate in endothelial monolayer permeability, TEER, as well as the expression of ZO-1. Our results provide a basis for further investigation into the neuroprotective mechanism of Lifibrate during stroke.


Assuntos
Barreira Hematoencefálica , AVC Isquêmico , Proteína da Zônula de Oclusão-1 , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , AVC Isquêmico/tratamento farmacológico , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Camundongos , Masculino , Humanos , Quinase de Cadeia Leve de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Linhagem Celular , Infarto da Artéria Cerebral Média/metabolismo
13.
Chem Asian J ; 19(11): e202400255, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38600033

RESUMO

N,N,P-Pincer nickel complexes effectively catalyze reaction of alcohols with benzylphosphine oxides to form alkenes in good yields. The protocol suits for a wide scope of substrates and generates only E-configurated alkenes. The method also shows good compatibility of functional groups. Methoxy, methylthio, trifluoromethyl, ketal, fluoro, chloro, bromo, thienyl, and furyl groups are tolerated. The mechanism studies support that the reaction proceeds through catalytic dehydrogenation of alcohols to aldehydes or ketones followed by condensation with benzyldiphenylphosphine oxides in the presence of KOtBu.

14.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543099

RESUMO

To establish the fingerprint of Cibotii rhizoma using high-performance liquid chromatography (HPLC) and evaluate the quality of Cibotii rhizoma from different regions using chemometrics to identify the potential quality markers, thirteen batches of Cibotii rhizoma samples were analyzed. the similarity evaluation system of TCM chromatographic fingerprint similarity evaluation was used to confirm common peaks. The SPSS 27 software was used for hierarchical cluster analysis (HCA), and SIMCA 14.1 software was used for principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Moreover, a batch of Cibotii rhizoma was selected for LC-MS analysis and speculated on 15 common components. HPLC fingerprint were established, 15 common peaks were matched, two chromatographic peaks were identified using standard substances (protocatechuic acid and protocatechuic aldehyde), and 13 common components were inferred through liquid chromatograph-mass spectrometer (LC-MS). The 13 batches of the samples showed good similarities (>0.910). The results of HCA, PCA and OPLS-DA showed that 13 batches of samples were divided into three groups, and different markers were selected. The method is simple, rapid and reproducible, and can provide a reference for the overall quality evaluation of Cibotii rhizoma.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38215321

RESUMO

The goal of balanced clustering is partitioning data into distinct groups of equal size. Previous studies have attempted to address this problem by designing balanced regularizers or utilizing conventional clustering methods. However, these methods often rely solely on classic methods, which limits their performance and primarily focuses on low-dimensional data. Although neural networks exhibit effective performance on high-dimensional datasets, they struggle to effectively leverage prior knowledge for clustering with a balanced tendency. To overcome the above limitations, we propose deep semisupervised balanced clustering, which simultaneously learns clustering and generates balance-favorable representations. Our model is based on the autoencoder paradigm incorporating a semisupervised module. Specifically, we introduce a balance-oriented clustering loss and incorporate pairwise constraints into the penalty term as a pluggable module using the Lagrangian multiplier method. Theoretically, we ensure that the proposed model maintains a balanced orientation and provides a comprehensive optimization process. Empirically, we conducted extensive experiments on four datasets to demonstrate significant improvements in clustering performance and balanced measurements. Our code is available at https://github.com/DuannYu/BalancedSemi-TNNLS.

16.
Heliyon ; 10(13): e34029, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071712

RESUMO

Bladder cancer (BC) exhibits diversity in clinical outcomes and is characterized by heterogeneity. Anoikis, a form of programmed cell death, plays a crucial role in facilitating tumor invasion and metastasis. This study comprehensively investigated the genetic landscape of BC progression, identifying 300 differentially expressed Anoikis-related genes (DE-ARGs) through in-depth analysis of the GSE13507 datasets. Functional enrichment analysis revealed associations with diverse diseases and biological processes. Employing machine learning algorithms, a logistic regression model based on nine marker genes demonstrated superior accuracy in distinguishing BC from normal samples. Validation in TCGA datasets highlighted the prognostic significance of LRP1, FASN, and SIRT6, suggesting their potential as cancer biomarkers. Particularly, FASN emerged as an independent prognostic indicator, regulating BC cell proliferation and metastasis through the Wnt/ß-catenin pathway. The study provides crucial insights into altered genetic landscapes and potential therapeutic strategies for BC, emphasizing the significance of FASN in BC prognosis and progression.

17.
J Cancer ; 15(8): 2373-2379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495487

RESUMO

While CKLF-like MARVEL transmembrane domain containing 6 (CMTM6)'s role in stabilizing PD-L1 and immune evasion within tumors is established, its expression in lung cancer tissue and adjacent macrophages remains uncertain. The study aimed to elucidate this ambiguity by investigating CMTM6's role in non-small cell lung cancer (NSCLC) prognosis. Employing immunohistochemical staining on 141 NSCLC and 110 adjacent normal lung tissue samples, CMTM6 expression was evaluated using the HSCORE system. Interestingly, NSCLC exhibited significantly higher CMTM6 levels (161.04±86.60) compared to normal tissues (71.20±45.10) (p < 0.001), detected not only in cancer cells but also in macrophages, lymphocytes, and nearby bronchial epithelial cells. Stratifying patients by CMTM6 levels unveiled a correlation between heightened expression and poorer overall survival (p = 0.003), alongside a link to tumor-infiltrating lymphocytes (TIL) (p = 0.037), especially in cases with increased TIL. Multivariate analysis identified CMTM6 as an independent predictor of overall survival (p = 0.009), implying that elevated CMTM6 expression in NSCLC might signify an adverse prognostic marker for patient outcomes.

18.
Huan Jing Ke Xue ; 45(2): 645-654, 2024 Feb 08.
Artigo em Zh | MEDLINE | ID: mdl-38471905

RESUMO

It is of great importance to scientifically evaluate the impact of weather and climate conditions on the occurrence of O3 pollution in order to improve the accuracy of O3 pollution forecasts, as well as to reasonably control and reduce the adverse effects of O3 pollution. The characteristics of O3 concentration and climate background were analyzed based on daily O3 concentration data, meteorological factors, and NCEP/NCER reanalysis data from 2006 to 2021 in Shanghai. In addition, the differences in atmospheric circulation situations during years with anomalous O3 concentrations were compared and diagnosed from the perspective of climatology. Additionally, the monthly O3 concentration prediction model (seasonal autoregressive integrated moving average with exogenous regressors, SARIMAX) was further established by adding the key meteorological factors. The results indicated that both the whole-year average and summer half-year average O3 concentrations in Shanghai were increasing with fluctuation, and the summer half-year average was much higher than the annual average, up to 36.2%. Furthermore, there was a significant negative correlation between O3 concentration and wind speed (correlation coefficient of -0.826) and a significant positive correlation with the frequency of static wind and the number of days in which the low cloud cover was less than 20% (correlation coefficients of 0.836 and 0.724, respectively). The monthly mean O3 concentration had a clear periodicity, showing a pattern with a high concentration in the middle period (April to September) and a low concentration at the beginning and end of the periods. High O3 concentration years (2013-2021) were accompanied by more polluted days, lower average wind speed, more small wind (≤1.5 m·s-1) days, more days of low cloud cover of less than 20%, more days of high temperature, higher direct solar radiation, and more sunshine hours. When the location of the stronger West Pacific subtropical high was westward and southward in the summer half-year, Shanghai was influenced by an anomalous westerly wind, which was not conducive to the transportation of clean air from the sea to Shanghai and thus led to the high concentration of O3 pollution. When the long wave radiation emitted from the ground was low in the summer half-year, it was favorable for the increase in ground temperature and caused a high concentration of O3 pollution. Adding direct solar radiation, maximum temperature, and wind speed as exogenous variables to the monthly O3 forecast model could significantly improve the effectiveness of the monthly forecast, with the root mean square error decreasing by 47.7% (from 22 to 11.5) and the correlation coefficient increasing by 11.2% (from 0.819 to 0.911), which could be applied to the practical prediction of monthly O3 concentration.

19.
Nanomicro Lett ; 16(1): 130, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393483

RESUMO

Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.

20.
Discov Oncol ; 15(1): 212, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836972

RESUMO

BACKGROUND: Liquid biopsies, for example, exosomal circular RNA (circRNA) can be used to assess potential predictive markers for hepatocellular carcinoma (HCC) in patients after curative resection. This study aimed to search for effective prognostic biomarkers for HCC in patients after surgical resection based on exosomal circRNA expression profiles. We developed two nomograms incorporating circRNAs to predict the postoperative recurrence-free survival (RFS) and overall survival (OS) of HCC patients. METHOD: Plasma exosomes isolated from HCC patients and healthy individuals were used for circRNA microarray analysis to explore differentially expressed circRNAs. Pearson correlation analysis was used to evaluate the correlation between circRNAs and clinicopathological features. Cox regression analysis was used to explore the correlation between circRNA and postoperative survival time as well as recurrence time. A nomogram based on circRNA and clinicopathological characteristics was established and further evaluated to predict prognosis and recurrence. RESULT: Among 60 significantly upregulated circRNAs and 25 downregulated circRNAs, hsa_circ_0029325 was selected to verify its power for predicting HCC outcomes. The high expression level of exosomal hsa_circ_0029325 was significantly correlated with OS (P = 0.001, HR = 2.04, 95% CI 1.41-3.32) and RFS (P = 0.009, HR = 1.62, 95% CI 1.14-2.30). Among 273 HCC patients, multivariate regression analysis showed that hsa_circ_0029325 (HR = 1.96, 95% CI 1.21-3.18), tumor size (HR = 2.11, 95% CI 1.33-3.32), clinical staging (HR = 2.31, 95% CI 1.54-3.48), and tumor thrombus (HR = 1.74, 95% CI 1.12-2.7) were independent risk factors for poor prognosis in HCC patients after radical resection. These independent predictors of prognosis were incorporated into the two nomograms. The AUCs under the 1-year, 3-year, and 5-year survival and recurrence curves of the OS and RFS nomograms were 0.755, 0.749, and 0.742 and 0.702, 0.685, and 0.642, respectively. The C-index, calibration curves, and clinical decision curves showed that the two prediction models had good predictive performance. These results were verified in the validation cohort with 90 HCC patients. CONCLUSION: Our study established two reliable nomograms for predicting recurrence and prognosis in HCC patients. We also show that it is feasible to screen potential predictive markers for HCC after curative resection through exosomal circRNA expression profile analysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa