Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Neoplasma ; 71(3): 219-230, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38958710

RESUMO

Epidermal growth factor receptor (EGFR) gene exon 19 in-frame deletion (19del) and exon 21 L858R point mutation (21L858R mutation) are prevalent mutations in lung adenocarcinoma. Lung adenocarcinoma patients with 19del presented with a better prognosis than the 21L858R mutation under the same epidermal growth factor receptor tyrosine kinase inhibitor treatment. Our study aimed to uncover the expression of long non-coding RNA LOC105376794 between 19del and 21L858R mutation, and explore the mechanism that regulates cells' biological behavior and gefitinib sensitivity in lung adenocarcinoma cells with 19del. Transcriptome sequencing was conducted to identify differentially expressed lncRNAs between EGFR 19del and 21L858R mutation in serum through the DNBSEQ Platform. Protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes pathway were conducted to analyze the relationship between lncRNAs and mRNAs through STRING and Dr. TOM. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure the expression of lncRNA LOC105376794 in serum and cells. Loss-of-function experiments were used to validate the biological function and gefitinib sensitivity of LOC105376794 in lung adenocarcinoma cells. Protein levels were detected by western blotting. Through transcriptome resequencing and RT-qPCR, we found the expression levels of LOC105376794 in serum were increased in the 19del group compared with the 21L858R mutation group. Inhibition of LOC105376794 promoted proliferation, migration and invasion, and reduced apoptosis of HCC827 and PC-9 cells. The low expression of LOC105376794 reduced gefitinib sensitivity in PC-9 cells. Mechanistically, we found that the knockdown of LOC105376794 suppressed activating transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP) signaling pathway and facilitated the expression of extracellular signal-regulated kinase 1/2 (ERK) phosphorylation. LOC105376794 altered cell biological behavior and gefitinib sensitivity of lung adenocarcinoma cells with 19del through the ATF4/CHOP signaling pathway and the expression of ERK phosphorylation. The results further illustrated the fact that lung adenocarcinoma patients with 19del presented with a more favorable clinical outcome and provided a theoretical basis for treatment strategy for lung adenocarcinoma patients with 19del.


Assuntos
Adenocarcinoma de Pulmão , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Gefitinibe , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Gefitinibe/farmacologia , RNA Longo não Codificante/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fosforilação , Linhagem Celular Tumoral , Mutação , Proliferação de Células , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica , Fator 4 Ativador da Transcrição
2.
Environ Sci Technol ; 57(4): 1600-1612, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36642923

RESUMO

Extracellular polymeric substances (EPS) are crucial for cyanobacterial proliferation; however, certain queries, including how EPS affects cellular nutrient processes and what are the implications for nutrient management in lakes, are not well documented. Here, the dynamics of cyanobacterial EPS-associated phosphorus (EPS-P) were examined both in a shallow eutrophic lake (Lake Taihu, China) and in laboratory experiments with respect to nitrogen (N) and phosphorus (P) availability. Results indicated that 40-65% of the total cyanobacterial aggregate/particulate P presented as EPS-P (mainly labile P and Fe/Al-P). Phosphorus-starved cyanobacteria rapidly replenished their EPS-P pools after the P was resupplied, and the P concentration in this pool was stable for long afterward, although the environmental P concentration decreased dramatically. A low-N treatment enhanced the EPS production alongside two-fold EPS-P accumulation (particularly labile P) higher than the control. Such patterns occurred in the lake where EPS and EPS-P contents were high under N limitation. EPS-P enrichment increased the P content in cyanobacteria; subsequently, it could hold the total P concentration higher for longer and make bloom mitigation harder. The findings outline a new insight into EPS functions in the P process of cyanobacterial aggregates and encourage consideration of both N and P reductions in nutrient management.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Fósforo/análise , Matriz Extracelular de Substâncias Poliméricas/química , Eutrofização , China , Nutrientes
3.
Phys Chem Chem Phys ; 24(20): 12214-12225, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575198

RESUMO

Spinel LiNi0.5Mn1.5O4 (LNMO) is one potential cathode candidate for next-generation high energy-density lithium-ion batteries (LIBs). However, serious capacity decay from its poor structural stability, especially at high operating temperatures, shadows its application prospects. In this work, N-doped LNMO (LNMON) was synthesized by a facile co-precipitation method and multistep calcination, exhibiting a unique yolk-shell architecture. Concurrently, N dopants are introduced into a LNMO lattice, endowing LNMON with a more stable structure via stronger Ni-N/Mn-N bindings. Benefiting from the synergistic effect of the yolk-shell structure and N-doped engineering, the obtained LNMON cathode exhibits an impressive rate and the state-of-the-art cycling capability, delivering a high capacity of 103 mA h g-1 at 25 °C after 8000 cycles. Even at a high operating temperature of 60 °C, the capacity retention remains at 92% after 1000 cycles. The discovery of N dopants in improving the cycling capability of LNMO in our case offers a prospective approach to enable 5 V LNMO cathode materials with excellent cycling capability.

4.
Entropy (Basel) ; 24(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35455153

RESUMO

The development of display technology has continuously increased the requirements for image resolution. However, the imaging systems of many cameras are limited by their physical conditions, and the image resolution is often restrictive. Recently, several models based on deep convolutional neural network (CNN) have gained significant performance for image super-resolution (SR), while extensive memory consumption and computation overhead hinder practical applications. For this purpose, we present a lightweight network that automatically searches dense connection (ASDCN) for image super-resolution (SR), which effectively reduces redundancy in dense connection and focuses on more valuable features. We employ neural architecture search (NAS) to model the searching of dense connections. Qualitative and quantitative experiments on five public datasets show that our derived model achieves superior performance over the state-of-the-art models.

5.
Bull Environ Contam Toxicol ; 102(2): 231-238, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30623206

RESUMO

Pico-cyanobacteria and micro-cyanobacteria coexist ubiquitously in many lakes. Differences in cell size and abilities to utilize nutrients may influence their distribution patterns. In this study, Synechococcus sp. and Microcystis aeruginosa were chosen as pico- and micro-cyanobacteria, respectively. Gradient phosphorus treatments (0.002, 0.01, 0.05, and 0.25 mg P L-1) were designed in mono- and co-cultures. Growth curves were recorded and fitted by the Monod equation. Moreover, the interspecific competition was analyzed by the Lotka-Volterra model. When mono-cultured in lower P conditions (≤ 0.01 mg P L-1), Synechococcus sp. obtained much higher biomass than M. aeruginosa. But, M. aeruginosa grew faster than Synechococcus sp. in higher P groups (≥ 0.05 mg P L-1) (p < 0.05). Synechococcus sp. has abilities to thrive in low-phosphorus environments, whereas M. aeruginosa favored high-phosphorus conditions. In co-cultures, Synechococcus sp. strongly inhibited M. aeruginosa at each P treatment.


Assuntos
Microcystis/efeitos dos fármacos , Fósforo/farmacologia , Synechococcus/efeitos dos fármacos , Biomassa , Ecossistema , Lagos , Microcystis/citologia , Microcystis/crescimento & desenvolvimento , Especificidade da Espécie , Synechococcus/citologia , Synechococcus/crescimento & desenvolvimento
6.
Entropy (Basel) ; 21(8)2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-33267453

RESUMO

The flow in channels of microdevices is usually in the developing regime. Three-dimensional laminar flow characteristics of a nanofluid in microchannel plate fin heat sinks are investigated numerically in this paper. Deionized water and Al2O3-water nanofluid are employed as the cooling fluid in our work. The effects of the Reynolds number (100 < Re < 1000), channel aspect ratio (0 < ε < 1), and nanoparticle volume fraction (0.5% < Φ < 5%) on pressure drop and entropy generation in microchannel plate fin heat sinks are examined in detail. Herein, the general expression of the entropy generation rate considering entrance effects is developed. The results revealed that the frictional entropy generation and pressure drop increase as nanoparticle volume fraction and Reynolds number increase, while decrease as the channel aspect ratio increases. When the nanoparticle volume fraction increases from 0 to 3% at Re = 500, the pressure drop of microchannel plate fin heat sinks with ε = 0.5 increases by 9%. It is demonstrated that the effect of the entrance region is crucial for evaluating the performance of microchannel plate fin heat sinks. The study may shed some light on the design and optimization of microchannel heat sinks.

7.
Environ Sci Technol ; 52(5): 3295-3303, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29433322

RESUMO

Ultrasound has been regarded as an environmental friendly technology to utilize microalgae biomass and control algal blooms. In this study, four quantitative techniques, including cell counting, optical density of algal suspension, pigments release, and protein release, were performed on three species of microalgae ( M. aeruginosa, C. pyrenoidosa, and C. reinhardtii) to develop effective techniques for rapid monitoring of cell disruption and to optimize the acoustic energy efficiency. Results showed optical density of algal suspensions was not an optimal indicator to monitor cell disruption, although it is a common technique for determining cell concentration in microbial cultures. Instead, an accurate and reliable technique was to determine the release of intracellular pigments (absorbance peaks of supernatant) for indicating cell rupture. The protein released during sonication could also be a useful indicator if it is the component of interest. A fitted power functional model showed a strong relationship between cell disruption and energy consumption ( R2 > 0.87). This model could provide an effective approach to directly compare the energy efficiency of ultrasound in different systems or with varying microalgae species. This study provides valuable information for microalgae utilization and the treatment of algal blooms by ultrasound, so as to achieve energy conservation and environmental safety.


Assuntos
Microalgas , Biomassa , Sonicação , Suspensões , Ultrassonografia
8.
Bull Environ Contam Toxicol ; 101(1): 117-123, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29744520

RESUMO

Ultrasound can be used to induce cell resonance and cavitation to inhibit cyanobacterial growth, but it can also lead to increase in dissolved nutrients because of cell disruption. This study investigated the process from cell inactivation to disruption of Microcystis aeruginosa. Algal cells were sonicated (at 35 kHz) under various intensities and durations. Results showed that chlorophyll a content and Fv/Fm values decreased slightly within the first 5 min. Superoxide dismutase activity was stimulated and its peak value appeared at the fifth minute. After 20 min, considerable number of ruptured cells were observed and the concentrations of dissolved nitrogen and phosphorus increased rapidly. Finally, ammonia and nitrate merely composed a small portion of dissolved nitrogen. This study demonstrated that excessive ultrasound treatment can significantly rupture algal cells and lead to the release of cellular inclusions, which may cause ecological issues or public health problems. Based on our findings, ultrasonic intensity controlled at 0.035 W/mL and applied for a duration of 20 min delivers the optimal result in effectively inhibiting physiological activities of Microcystis aeruginosa without marked cell disruption. This will ultimately help to achieve algal control, while conserving energy and preserving the environment and human health.


Assuntos
Microcystis/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Ondas Ultrassônicas , Poluentes Químicos da Água/análise , Clorofila A/metabolismo , Microcystis/metabolismo , Modelos Teóricos
9.
Water Sci Technol ; 76(7-8): 2085-2094, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29068338

RESUMO

Ultrasound can inhibit cyanobacterial growth through rupturing cells, but this pathway frequently has the risk to release intercellular toxin (e.g., microcystin). Depressing photosynthesis without cell disruption may provide a new strategy to control cyanobacterial blooms using ultrasound, especially Microcystis blooms. In this work, Microcystis aeruginosa (toxic cyanobacteria) and Chlorella pyrenoidosa (typical green algae) were chosen as model microalgae to verify this hypothesis. Results showed that ultrasound has the ability to inhibit cyanobacterial photosynthesis significantly and selectively. Specifically, sonication damaged QA, a tightly bound one-electron acceptor, and blocked electron flow at QB, a two-electron acceptor, in the photosystem II (PSII) of M. aeruginosa when it was exposed for 60 s (35 kHz, 0.043 W/cm3). Moreover, 44.8% of the reaction centers (RCs) in the PSII of M. aeruginosa were transferred into inactive ones (RCsis), and the cell concentration decreased by 32.5% after sonication for 300 s. By contrast, only 7.9% of RCsi occurred in C. pyrenoidosa, and cell concentration and chlorophyll-a content reduced by 18.7% and 9.3%, respectively. Differences in both species (i.e., cell structures) might be responsible for the varying levels to sonication. This research suggests that cyanobacteria, especially Microcystis, could be controlled by ultrasound via damaging their PSIIs.


Assuntos
Chlorella/metabolismo , Clorofila/análogos & derivados , Microcystis/metabolismo , Fotossíntese/fisiologia , Ultrassom , Clorofila/metabolismo , Clorofila A , Fluorescência , Microalgas/metabolismo , Microcistinas , Complexo de Proteína do Fotossistema II/metabolismo
10.
Environ Monit Assess ; 186(8): 4935-46, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24700206

RESUMO

Acid volatile sulfide (AVS) has been regarded as an important factor controlling metal bioavailability in anoxic sediments, but its effect on metal accumulation under natural conditions is poorly understood. Here, a field study of the influence of AVS on metal accumulation by Limnodrilus sp. in a heavily polluted river is provided. Most of the study area was subject to anaerobic and strongly reducing conditions, and the concentration of trace metals in surface sediments was high, as were the concentration of AVS and simultaneously extracted metals (SEM; average AVS = 20.3 µmol g(-1), average ∑SEM5 = 9.42 µmol g(-1); ∑SEM5 refers to the sum of SEMCd, SEMCu, SEMPb, SEMNi, and SEMZn). Only a few species and small quantities of benthic invertebrates were found, and Limnodrilus sp. was dominant. There was no correlation between trace metal accumulation and (SEM-AVS), and in stations where (SEM-AVS) <0, the absolute value of bioaccumulation was high (average ∑BIO5 = 4.07 µmol g(-1); ∑BIO5 refers to the sum of BIOCd, BIOCu, BIOPb, BIONi, and BIOZn), indicating that there was no relationship between (SEM-AVS) and metal accumulation in Limnodrilus sp. This was likely because Limnodrilus sp. ingest sediment particles as their main food source, so pore water metals play a minor role in their bioaccumulation (BIO) of materials. However, ∑BIO5 was significantly correlated with ∑SEM5 (r = 0.795, p < 0.01), revealing that the large number of sulfide-bound metals (SEM) in sediments may play an important role in metal accumulation in Limnodrilus sp., which can assimilate sulfide-associated metals by the help of the digestive fluids in the digestive systems.


Assuntos
Metais Pesados/metabolismo , Oligoquetos/metabolismo , Rios/química , Sulfetos/química , Poluentes Químicos da Água/metabolismo , Animais , Monitoramento Ambiental , Sedimentos Geológicos/química , Invertebrados , Metais Pesados/análise , Metais Pesados/química , Sulfetos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
11.
Harmful Algae ; 134: 102622, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705618

RESUMO

Colony formation is a crucial characteristic of Microcystis, a cyanobacterium known for causing cyanobacterial harmful algal blooms (cyanoHABs). It has been observed that as Microcystis colonies grow larger, they often become less densely packed, which correlates with a decrease in light penetration. The objective of this study was to investigate the effects of light limitation on the morphological variations in Microcystis, particularly in relation to the crowded cellular environment. The results indicated that when there was sufficient light (transmittance = 100 %) to support a growth rate of 0.11±0.01 day-1, a significant increase in colony size was found, from 466±15 µm to 1030±111 µm. However, under light limitation (transmittance = 50 % - 1 %) where the growth rate was lower than 0, there was no significant improvement in colony size. Microcystis in the light limitation groups exhibited a loose cell arrangement and even the presence of holes or pores within the colony, confirming the negative correlation between colony size and cell arrangement. This pattern is driven by regional differences in growth within the colony, as internal cells have a significantly lower frequency of division compared to peripheral cells, due to intra-colony self-shading (ICSS). The research demonstrates that Microcystis can adjust its cell arrangement to avoid excessive self-shading, which has implications for predicting and controlling cyanoHABs. These findings also contribute to the understanding of cyanobacterial variations and can potentially inform future research on the diverse phycosphere.


Assuntos
Proliferação Nociva de Algas , Luz , Microcystis , Microcystis/fisiologia , Microcystis/crescimento & desenvolvimento
12.
Chemosphere ; 353: 141600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458355

RESUMO

As a cost-effective material, biochar, known as 'black gold', has been widely used for environmental applications (EA), including chromium-contaminated wastewater remediation. However, limited reports focused on the multiple impacts of biochar, including energy consumption (EC) and environmental risk (ER). Hence, to recommend biochar as a green material for sustainable development, the three critical units were explored and quantitatively assessed based on an adapted 3E model (EA-EC-ER). The tested biochar was produced by limited-oxygen pyrolysis at 400-700 °C by using three typical biomasses (Ulva prolifera, phoenix tree, and municipal sludge), and the optimal operational modulus of the 3E model was identified using six key indicators. The findings revealed a significant positive correlation between EC and biochar yield (p < 0.05). The biochar produced by phoenix tree consumed more energy due to having higher content of unstable carbon fractions. Further, high-temperature and low-temperature biochar demonstrated different chromium removal mechanisms. Notably, the biochar produced at low temperature (400 °C) achieved better EA due to having high removal capacity and stability. Regarding ER, pyrolysis temperature of 500 °C could effectively stabilize the ecological risk in all biochar and the biochar produced by Ulva prolifera depicted the greatest reduction (37-fold). However, the increase in pyrolysis temperature would lead to an increase in global warming potential by nearly 22 times. Finally, the 3E model disclosed that the biochar produced by Ulva prolifera at 500 °C with low EC, high EA, and low ER had the most positive recommendation index (+78%). Importantly, a rapid assessment methodology was established by extracting parameters from the correlation. Based on this methodology, about eight percent of biochar can be the highest recommended from more than 100 collected peer-related data. Overall, the obtained findings highlighted that the multiple impacts of biochar should be considered to efficiently advance global sustainable development goals.


Assuntos
Cromo , Algas Comestíveis , Ulva , Águas Residuárias , Carvão Vegetal
13.
Anticancer Drugs ; 24(3): 300-5, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23211354

RESUMO

The ERCC5 gene plays an important role in the nucleotide excision repair pathway that recognizes and removes platinum-DNA adducts. We aimed to examine whether ERCC5 promoter polymorphisms contribute toward intervariations in the platinum treatment response in patients with advanced non-small-cell lung cancer (NSCLC). We evaluated the association between three tag-single nucleotide polymorphisms in the ERCC5 promoter region (rs2094258, rs751402, and rs2296147, respectively) and the efficacy of chemotherapy in 228 advanced NSCLC patients. We found that the rs751402 AA genotype was associated with a better treatment response [AA vs. AG+GG: odds ratio (OR)=2.74, 95% confidence interval (CI) 1.04-7.26, P=0.036) in all NSCLC patients, which was more evident in the subgroup of patients with squamous cell carcinoma (AA vs. GG: OR=6.40, 95% CI 1.15-35.50, P=0.043; AA vs. AG+GG: OR=6.12, 95% CI 1.15-32.52, P=0.019). No statistically significant association was found between rs2094258 and rs2296147 polymorphisms and treatment response. Our results suggested that the ERCC5 rs751402 AA genotype increased the chemotherapy response in advanced NSCLC, especially in patients with squamous cell carcinoma. Further and larger scale studies are still required to provide more comprehensive information on ERCC5 promoter variations in the clinical outcome of NSCLC patients treated with platinum regimens.


Assuntos
Antineoplásicos/uso terapêutico , Carboplatina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Cisplatino/uso terapêutico , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/química , Carboplatina/química , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Cisplatino/química , Intervalos de Confiança , Feminino , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Platina , Regiões Promotoras Genéticas/efeitos dos fármacos , Sítio de Iniciação de Transcrição , Resultado do Tratamento , Adulto Jovem
14.
Water Res ; 230: 119526, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36577257

RESUMO

Microplastics and nanoplastics are being assumed as emerging toxic pollutants owing to their unique persistent physicochemical attributes, chemical stability, and nonbiodegradable nature. Owing to their possible toxicological impacts (not only on aquatic biota but also on humans), scientific communities are developing innovative technologies to remove microplastics and nanoplastics from polluted waters. Various technologies, including adsorption, coagulation, photocatalysis, bioremediation, and filtration, have been developed and employed to eliminate microplastics and nanoplastics. Recently, adsorption technology has been getting great interest in capturing microplastics and nanoplastics and achieving excellent removal performance. Therefore, this review is designed to discuss recent innovations in developing promising adsorbents for the remediation of microplastics and nanoplastics from wastewater and natural water. The developed adsorbents have been classified into four main classes: sponge/aerogel-based, metal-based, biochar-based, and other developed adsorbents, and their performance efficiencies have been critically examined. Further, the influence of various pertinent factors, including adsorbents' characteristics, microplastics/nanoplastics' characteristics, solution pH, reaction temperature, natural organic matter, and co-existing/interfering ions on the removal performance of advanced adsorbents, have been critically assessed. Importantly, the particle application of the developed adsorbents in removing microplastics and nanoplastics from natural water has been elucidated. In addition, barriers to market penetration of the developed adsorbents are briefly discussed to help experts transfer adsorption-based technology from laboratory-scale to commercial applications. Finally, the current knowledge gaps and future recommendations are highlighted to assist scientific communal for improving adsorption-based technologies to battle against microplastics and nanoplastics pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Poluentes Químicos da Água/análise , Águas Residuárias , Adsorção , Água
15.
Sci Total Environ ; 872: 162021, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36775150

RESUMO

In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.


Assuntos
Poluentes do Solo , Poluentes do Solo/análise , Carvão Vegetal , Tecnologia , Solo
16.
Water Res ; 246: 120704, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827036

RESUMO

Colonial cyanobacteria have been identified as the primary contributor to the global occurrence of cyanobacterial harmful algal blooms (cyanoHABs), which are further intensified by the presence of "pseudo-persistent" antibiotics. Nevertheless, the impact of antibiotics on the growth and size of colonial cyanobacteria remains unclear. In this study, the response of cyanobacterium Microcystis to varying doses of antibiotics was assessed (0, 0.1, 0.5, 1, 10, and 50 µg L-1) by comparing the unicellular and colonial morphotypes. Interestingly, the morphological structure of cyanobacteria plays a significant role in their reaction to antibiotics. In comparison to the unicellular morphotype, the colonial morphotype exhibited a greater promotion in growth rate (11 %-22 %) to low doses of antibiotics and was less inhibited (-121 %--62 %) under high doses. Furthermore, antibiotics may affect the size of cyanobacterial colonies by disrupting the secretion of algal organic matter, which also exhibited a two-phase pattern. This work sheds light on the significance of methodology research involving both unicellular and colonial cyanobacteria. Future research and lake management should prioritize studying the morphological traits of cyanobacteria under different levels of antibiotic exposure. This approach may lead to novel strategies for predicting cyanoHABs under antibiotic pollution more effectively.


Assuntos
Cianobactérias , Microcystis , Microcystis/fisiologia , Proliferação Nociva de Algas , Lagos , Antibacterianos/farmacologia
17.
Water Res ; 245: 120617, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738942

RESUMO

Recently, microplastics (MPs) and nanoplastics (NPs) contamination is a worldwide problem owing to the immense usage of plastic commodities. Thus, the environmental risks by MPs and NPs demand the application of innovative, efficient, and sustainable technologies to control the pollution of plastic particles. Regarding this, numerous technologies, including adsorption, coagulation, filtration, bioremediation, chemical precipitation, and photocatalysis, have been engaged to eradicate MPs and NPs from contaminated waters. However, the coagulation technique is getting much attention owing to its simplicity, higher removal performance, low carbon footprint, and low operational and maintenance cost. Therefore, this paper has been designed to critically summarize the recent innovations on the application of coagulation process to eradicate MPs and NPs from both synthetic and real sewage. More importantly, the effect of pertinent factors, including characteristics of coagulants, MPs/NPs, and environmental medium on the elimination performances and mechanisms of MPs/NPs have been critically investigated. Further, the potential of coagulation technology in eliminating MPs and NPs from real sewage has been critically elucidated for the first time, for better execution of this technique at commercial levels. Finally, this critical review also presents current research gaps and future outlooks for the improvement of coagulation process for eradicating MPs and NPs from water and real sewage. Overall, the current review will offer valuable knowledge to scientists in selecting a suitable technique for controlling plastic pollution.

18.
Harmful Algae ; 115: 102235, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35623697

RESUMO

Colony formation is a key trait facilitating the formation of Microcystis blooms. However, the role of morphological changes (e.g., colony size and tightness) in the adaptation to nutrient availability is not fully understood. In this study, we analyzed the morphological changes under both nutrient sufficiency and deficiency. Accordant morphological changes were found with both an isolated colonial strain and mixed field colonies. Colonies that were limited by nutrients became bloated and uncompacted structures, and this change was more pronounced under N deficiency. This looser morphology increased the availability of intra-colony light and relieved the size effect. When nutrients were sufficient, small colonies emerged, which helped to maintain rapid growth (0.32 day-1). Our study highlighted probable role of morphological variations in: (1) diminishing intra-colony self-shading when facing nutrient deficiency; and (2) enlarging the population under high trophic levels by generating daughter colonies. These roles were also verified using field data from Lake Taihu, which further indicated that the seasonal succession of morphospecies was probably the result of adaptive morphological changes. Adaptive morphological changes offer advantages against fluctuations in nutrient availability, which should be considered when attempting to restrain bloom formation.


Assuntos
Microcystis , Aclimatação , Lagos , Nutrientes
19.
Sci Total Environ ; 845: 157257, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817111

RESUMO

Suspended particulate matter (SPM) and sediments are important sources of dissolved organic matter (DOM) in lake water. However, studies on what extent and how both sources affect DOM composition are lacking, which hampers DOM management. Herein, DOM, SPM-extracted particulate organic matter (POM), and sediment-extracted organic matter (SOM) were characterized and compared in terms of absorption spectral properties and chemical composition in Lake Taihu, a large cyanobacterial bloom-affected shallow lake. A statistical method was proposed to quantify the similarity of organic matter (OM) in the different states and to evaluate the potential effects of SPM and sediments on DOM. Results showed that POM and DOM were mainly composed of small-molecular-size and low-humified organic components (i.e., 27 %-38 % tryptophan-like and ~30 % protein-like substances), and most of them were derived from autochthonous sources. While tyrosine-like (57 %) and humic-like (27 %) substances were dominant in SOM. The OM similarity between POM and DOM was approximately 1.5 times higher than that between SOM and DOM, indicating the greater effect of SPM than sediments on DOM composition. High pH and low nitrogen (e.g., nitrate and ammonia) were positively correlated to the OM similarity between POM and DOM. Further, the findings indicated that nitrogen limitation enhanced the OM exchange between POM and DOM by promoting the production of extracellular polymeric substances (EPS) in cyanobacterial aggregates. The obtained findings highlighted the importance of SPM in shaping the DOM composition relative to sediments and facilitating the DOM management in bloom-affected lakes.


Assuntos
Cianobactérias , Lagos , China , Matéria Orgânica Dissolvida , Substâncias Húmicas/análise , Lagos/química , Nitrogênio , Material Particulado/análise , Água
20.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2845-2852, 2022 Oct.
Artigo em Zh | MEDLINE | ID: mdl-36384622

RESUMO

Microcystis aeruginosa is a common bloom-forming cyanobacterium, which generally coexists and competes with Chlorella pyrenoidosa in lakes. Sonication can be used for emergency management of algal blooms. Ultrasound influences algal growth and physiological parameters, as well as interspecific competition in algal community. To explore the effects of ultrasonic stress (35 kHz, 0.035 W·cm-3) on physiological characteristics and interspecific competition of algae, M. aeruginosa and C. pyrenoidosa were sonicated in mono- and co-cultures (1:1 mixture, according to cell concentration). Results showed that M. aeruginosa was more sensitive to ultrasonic stress. After the sonication for 600 s, both photosynthetic activity (Fv/Fm) and esterase activity of M. aeruginosa showed significant changes, with Fv/Fm values in mono- and co-cultures being decreased by 51.8% and 64.7%, respectively. In comparison, Fv/Fm values of C. pyrenoidosa changed slightly. M. aeruginosa released more chromophoric dissolved organic matter (CDOM, including tryptophan-, tyrosine-, and fulvic-like substances) than C. pyrenoidosa. The cell concentration of C. pyrenoidosa showed little changes regardless of sonication time, while the cell concentration of M. aeruginosa decreased at different degrees. The cell concentration of M. aeruginosa in co-cultures decreased by 42.6% after sonication for 600 s, which might be responsible for the dominance of C. pyrenoidosa during 8 days after sonication. M. aeruginosa inhibited C. pyrenoidosa in other treatments, but mutual inhibition appeared in the 600 s sonication treatment. After ultrasonic treatment, the activity of M. aeruginosa could recover gradually. The treatment should be conducted again within a week to improve the persistence of algal control.


Assuntos
Chlorella , Cianobactérias , Microcystis , Microcystis/fisiologia , Chlorella/fisiologia , Fotossíntese , Lagos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa