Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microsc Microanal ; 25(3): 798-809, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30919801

RESUMO

The adsorption of intact liposomes on surfaces is of great importance for the development of sensors and drug delivery systems and, also, strongly dependent on the surface roughness where the liposomes are adsorbed. In this paper, we analyzed, by using atomic force microscopy in liquid, the evolution of the morphology of gold surfaces and of poly(allylamine hydrochloride) (PAH) surfaces with different roughness during the adsorption of liposomes prepared with the synthetic phospholipid 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]. Our results reveal the following. On smooth surfaces of Au only and Au with PAH, the liposomes open and deploy on the substrate, creating a supported-lipid bilayer, with the opening process being faster on the Au/PAH surface. On rough substrates of Au coated with polyelectrolyte multilayers, the liposomes were adsorbed intact on the surface. This was corroborated by power spectral density analysis that demonstrates the presence of superstructures with an average lateral size of 43 and 87 nm, in accordance with two and four times the mean liposome hydrodynamic diameter of about 21 nm. In addition, this work presents an adequate and effective methodology for analysis of adsorption phenomena of liposomes on rough surfaces.


Assuntos
Ouro/química , Lipossomos/química , Microscopia de Força Atômica/métodos , Fosfatidilgliceróis/química , Adsorção , Sistemas de Liberação de Medicamentos , Fractais , Cinética , Bicamadas Lipídicas , Modelos Estruturais , Estrutura Molecular , Poliaminas/química , Propriedades de Superfície
2.
J Sci Food Agric ; 98(2): 681-690, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28671261

RESUMO

BACKGROUND: In this paper, various extra-virgin and virgin olive oils samples from different Portuguese markets were studied. For this purpose, a voltammetric electronic tongue (VE-tongue), consisting of two kinds of working electrode within the array, together with physicochemical analysis and headspace gas chromatography coupled with mass spectrometry (HS-GC-MS), were applied. In addition, preliminary considerations of relationships between physicochemical parameters and multisensory system were reported. RESULTS: The physicochemical parameters exhibit significant differences among the analyzed olive oil samples that define its qualities. Regarding the aroma profile, 14 volatile compounds were characterized using HS-GC-MS; among these, hex-2-enal, hexanal, acetic acid, hex-3-ene-1-ol acetate and hex-3-en-1-ol were semi-quantitatively detected as the main aroma compounds in the analyzed samples. Moreover, pattern recognition methods demonstrate the discrimination power of the proposed VE-tongue system. The results reveal the VE-tongue's ability to classify olive oil samples and to identify unknown samples based of built models. In addition, the correlation between VE-tongue and physicochemical analysis exhibits a remarkable prediction model aimed at anticipating carotenoid content. CONCLUSION: The preliminary results of this investigation indicate that physicochemical and HS-GC-MS analysis, together with multisensory system coupled with chemometric techniques, presented a satisfactory performance regarding olive oil sample discrimination and identification. © 2017 Society of Chemical Industry.


Assuntos
Técnicas Eletroquímicas/instrumentação , Análise de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Azeite de Oliva/química , Compostos Orgânicos Voláteis/química , Carotenoides , Clorofila , Ácidos Graxos não Esterificados , Odorantes , Portugal , Microextração em Fase Sólida
3.
Eur Phys J E Soft Matter ; 36(9): 98, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24008406

RESUMO

The spectroscopic characterization of layer-by-layer (LbL) films containing liposomes is essential not only for determining the precise film architecture but also to guide the design of drug delivery systems. In this study we provide the first report of vacuum ultraviolet spectroscopy (VUV) characterization of LbL films made with liposomes from 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) alternated with poly(allylamine hydrochloride) (PAH). Measurements in the 6.0-9.5eV range allowed us to identify the electronic transitions responsible for the spectra, which were assigned to carboxyl, hydroxyl and phosphate groups in DPPG while the PAH spectra were governed by electronic transitions in the amino groups. The surface mass density of the LbL films could be determined, from which the formation of a DPPG bilayer was inferred. This rupture of the liposomes into bilayers was confirmed with atomic force microscopy measurements. In subsidiary experiments we ensured that the UV irradiation in vacuum had negligible damage in the DPPG liposomes during the course of the VUV measurements. In addition to demonstrating the usefulness of VUV spectroscopy, the results presented here may be exploited in biological applications of liposome-containing films.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Fosfatidilgliceróis/química , Espectroscopia Fotoeletrônica , Poliaminas/química , Vácuo
4.
Microsc Microanal ; 19(4): 867-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23742922

RESUMO

Roughness of a positively charged poly(allylamine hydrochloride) (PAH) polyelectrolyte surface was shown to strongly influence the adsorption of 1.2-dipalmitoyl-sn-3-glycero-[phosphorrac-(1-glycerol)] (DPPG) liposomes on it. The adsorption kinetic curves of DPPG liposomes onto a low-roughness PAH layer reveal an adsorbed amount of 5 mg/m², pointing to liposome rupture, whereas a high-roughness surface leads to adsorbed amounts of 51 mg/m², signifying adsorption of intact liposomes. The adsorption kinetic parameters calculated from adsorption kinetic curves allow us to conclude that the adsorption process is due to electrostatic interactions and also depends on processes such as diffusion and reorganization of lipids on the surface. Analysis of the roughness kinetics enabled us to calculate a growth exponent of 0.19 ± 0.07 and a roughness exponent of around 0.84, revealing that DPPG liposomes adsorbed onto rough surfaces follow the Villain self-affine model. By relating self-affine surfaces with hydrophobicity, the liposome integrity was explained by the reduction in the number of water molecules on the PAH surface, contributing to counterion anchorage near PAH ionic groups, reducing the liposome/PAH layer electrostatic forces and, consequently, avoiding liposome rupture.


Assuntos
Lipossomos/química , Lipossomos/ultraestrutura , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Propriedades de Superfície , Adsorção , Lipossomos/metabolismo , Microscopia de Força Atômica
5.
J Phys Chem B ; 119(27): 8544-52, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26076391

RESUMO

The adsorption of intact liposomes onto solid supports is a fundamental issue when preparing systems with encapsulated biological molecules. In this work, the adsorption kinetic of 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) liposomes onto cushions prepared from commom polyelectrolytes by the layer-by-layer technique was investigated with the main objective of finding the surface conditions leading to the adsorption of intact liposomes. For this purpose, different cushion surface roughnesses were obtained by changing the number of cushion bilayers. The adsorbed amount per unit area was measured through quartz crystal microbalance, surface morphology was characterized by atomic force microscopy, and the surface composition was assessed by X-ray photoelectron spectroscopy. The results show that (1) the amount of adsorbed lipids depends on the number of cushion bilayers, (2) the cushions are uniformly covered by the adsorbed lipids, and (3) the surface morphology of polymer cushions tunes liposome rupture and its adsorption kinetics. The fraction of ruptured liposomes, calculated from the measured amount of adsorbed lipids, is a function of surface roughness together with other surface morphology parameters, namely the dominating in-plane spatial feature size, the fractal dimension, and other textural features as well as amplitude and hybrid parameters.


Assuntos
Lipossomos/química , Fosfatidilgliceróis/química , Polímeros/química , Adsorção , Fractais , Compostos de Ouro/química , Cinética , Microscopia de Força Atômica , Modelos Químicos , Estrutura Molecular , Espectroscopia Fotoeletrônica , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa