Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Acta Neuropathol ; 142(4): 643-667, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34170374

RESUMO

The complement system is implicated in synapse loss in the MS hippocampus, but the functional consequences of synapse loss remain poorly understood. Here, in post-mortem MS hippocampi with demyelination we find that deposits of the complement component C1q are enriched in the CA2 subfield, are linked to loss of inhibitory synapses and are significantly higher in MS patients with cognitive impairments compared to those with preserved cognitive functions. Using the cuprizone mouse model of demyelination, we corroborated that C1q deposits are highest within the demyelinated dorsal hippocampal CA2 pyramidal layer and co-localized with inhibitory synapses engulfed by microglia/macrophages. In agreement with the loss of inhibitory perisomatic synapses, we found that Schaffer collateral feedforward inhibition but not excitation was impaired in CA2 pyramidal neurons and accompanied by intrinsic changes and a reduced spike output. Finally, consistent with excitability deficits, we show that cuprizone-treated mice exhibit impaired encoding of social memories. Together, our findings identify CA2 as a critical circuit in demyelinated intrahippocampal lesions and memory dysfunctions in MS.


Assuntos
Região CA2 Hipocampal/metabolismo , Região CA2 Hipocampal/patologia , Complemento C1q/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Sinapses/fisiologia , Idoso , Animais , Estudos de Casos e Controles , Cuprizona , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla/etiologia
2.
Ann Neurol ; 83(3): 636-649, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29466841

RESUMO

OBJECTIVE: Loss of function of the astrocyte-specific protein MLC1 leads to the childhood-onset leukodystrophy "megalencephalic leukoencephalopathy with subcortical cysts" (MLC). Studies on isolated cells show a role for MLC1 in astrocyte volume regulation and suggest that disturbed brain ion and water homeostasis is central to the disease. Excitability of neuronal networks is particularly sensitive to ion and water homeostasis. In line with this, reports of seizures and epilepsy in MLC patients exist. However, systematic assessment and mechanistic understanding of seizures in MLC are lacking. METHODS: We analyzed an MLC patient inventory to study occurrence of seizures in MLC. We used two distinct genetic mouse models of MLC to further study epileptiform activity and seizure threshold through wireless extracellular field potential recordings. Whole-cell patch-clamp recordings and K+ -sensitive electrode recordings in mouse brain slices were used to explore the underlying mechanisms of epilepsy in MLC. RESULTS: An early onset of seizures is common in MLC. Similarly, in MLC mice, we uncovered spontaneous epileptiform brain activity and a lowered threshold for induced seizures. At the cellular level, we found that although passive and active properties of individual pyramidal neurons are unchanged, extracellular K+ dynamics and neuronal network activity are abnormal in MLC mice. INTERPRETATION: Disturbed astrocyte regulation of ion and water homeostasis in MLC causes hyperexcitability of neuronal networks and seizures. These findings suggest a role for defective astrocyte volume regulation in epilepsy. Ann Neurol 2018;83:636-649.


Assuntos
Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Proteínas de Membrana/metabolismo , Potássio/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Cistos/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Proteínas de Membrana/genética , Camundongos Transgênicos , Mutação/genética , Convulsões/genética , Convulsões/metabolismo
3.
Brain ; 141(5): 1350-1374, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29538625

RESUMO

De novo heterozygous mutations in STXBP1/Munc18-1 cause early infantile epileptic encephalopathies (EIEE4, OMIM #612164) characterized by infantile epilepsy, developmental delay, intellectual disability, and can include autistic features. We characterized the cellular deficits for an allelic series of seven STXBP1 mutations and developed four mouse models that recapitulate the abnormal EEG activity and cognitive aspects of human STXBP1-encephalopathy. Disease-causing STXBP1 variants supported synaptic transmission to a variable extent on a null background, but had no effect when overexpressed on a heterozygous background. All disease variants had severely decreased protein levels. Together, these cellular studies suggest that impaired protein stability and STXBP1 haploinsufficiency explain STXBP1-encephalopathy and that, therefore, Stxbp1+/- mice provide a valid mouse model. Simultaneous video and EEG recordings revealed that Stxbp1+/- mice with different genomic backgrounds recapitulate the seizure/spasm phenotype observed in humans, characterized by myoclonic jerks and spike-wave discharges that were suppressed by the antiepileptic drug levetiracetam. Mice heterozygous for Stxbp1 in GABAergic neurons only, showed impaired viability, 50% died within 2-3 weeks, and the rest showed stronger epileptic activity. c-Fos staining implicated neocortical areas, but not other brain regions, as the seizure foci. Stxbp1+/- mice showed impaired cognitive performance, hyperactivity and anxiety-like behaviour, without altered social behaviour. Taken together, these data demonstrate the construct, face and predictive validity of Stxbp1+/- mice and point to protein instability, haploinsufficiency and imbalanced excitation in neocortex, as the underlying mechanism of STXBP1-encephalopathy. The mouse models reported here are valid models for development of therapeutic interventions targeting STXBP1-encephalopathy.


Assuntos
Encefalopatias/complicações , Encefalopatias/genética , Epilepsia/fisiopatologia , Haploinsuficiência/genética , Deficiência Intelectual/genética , Proteínas Munc18/genética , Animais , Anticonvulsivantes/uso terapêutico , Encefalopatias/tratamento farmacológico , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Epilepsia/tratamento farmacológico , Epilepsia/genética , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Deficiência Intelectual/complicações , Levetiracetam/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Munc18/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
4.
Ann Neurol ; 77(1): 114-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25382142

RESUMO

OBJECTIVE: Megalencephalic leukoencephalopathy with cysts (MLC) is a genetic disease characterized by infantile onset white matter edema and delayed onset neurological deterioration. Loss of MLC1 function causes MLC. MLC1 is involved in ion-water homeostasis, but its exact role is unknown. We generated Mlc1-null mice for further studies. METHODS: We investigated which brain cell types express MLC1, compared developmental expression in mice and men, and studied the consequences of loss of MLC1 in Mlc1-null mice. RESULTS: Like humans, mice expressed MLC1 only in astrocytes, especially those facing fluid-brain barriers. In mice, MLC1 expression increased until 3 weeks and then stabilized. In humans, MLC1 expression was highest in the first year, decreased, and stabilized from approximately 5 years. Mlc1-null mice had early onset megalencephaly and increased brain water content. From 3 weeks, abnormal astrocytes were present with swollen processes abutting fluid-brain barriers. From 3 months, widespread white matter vacuolization with intramyelinic edema developed. Mlc1-null astrocytes showed slowed regulatory volume decrease and reduced volume-regulated anion currents, which increased upon MLC1 re-expression. Mlc1-null astrocytes showed reduced expression of adhesion molecule GlialCAM and chloride channel ClC-2, but no substantial changes in other known MLC1-interacting proteins. INTERPRETATION: Mlc1-null mice replicate early stages of the human disease with early onset intramyelinic edema. The cellular functional defects, described for human MLC, were confirmed. The earliest change was astrocytic swelling, substantiating that in MLC the primary defect is in volume regulation by astrocytes. MLC1 expression affects expression of GlialCAM and ClC-2. Abnormal interplay between these proteins is part of the pathomechanisms of MLC.


Assuntos
Cistos/genética , Cistos/patologia , Cistos/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/fisiopatologia , Adolescente , Adulto , Fatores Etários , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Edema Encefálico/etiologia , Cerebelo/patologia , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Criança , Pré-Escolar , Cistos/metabolismo , Modelos Animais de Doenças , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Lactente , Recém-Nascido , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Equilíbrio Postural/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Transtornos de Sensação/genética , Substância Branca/metabolismo , Substância Branca/patologia , Substância Branca/ultraestrutura , Adulto Jovem
5.
Curr Biol ; 34(11): 2448-2459.e4, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38754425

RESUMO

Adaptive behavioral responses to stressors are critical for survival. However, which brain areas orchestrate switching the appropriate stress responses to distinct contexts is an open question. This study aimed to identify the cell-type-specific brain circuitry governing the selection of distinct behavioral strategies in response to stressors. Through novel mouse behavior paradigms, we observed distinct stressor-evoked behaviors in two psycho-spatially distinct contexts characterized by stressors inside or outside the safe zone. The identification of brain regions activated in both conditions revealed the involvement of the dorsomedial hypothalamus (DMH). Further investigation using optogenetics, chemogenetics, and photometry revealed that glutamatergic projections from the DMH to periaqueductal gray (PAG) mediated responses to inside stressors, while GABAergic projections, particularly from tachykinin1-expressing neurons, played a crucial role in coping with outside stressors. These findings elucidate the role of cell-type-specific circuitry from the DMH to the PAG in shaping behavioral strategies in response to stressors. These findings have the potential to advance our understanding of fundamental neurobiological processes and inform the development of novel approaches for managing context-dependent and anxiety-associated pathological conditions such as agoraphobia and claustrophobia.


Assuntos
Tronco Encefálico , Estresse Psicológico , Animais , Camundongos , Masculino , Tronco Encefálico/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Optogenética , Hipotálamo/fisiologia , Neurônios/fisiologia
6.
J Clin Pediatr Dent ; 37(1): 71-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23342570

RESUMO

Congenital Rubella Syndrome is a rare disorder comprised of a constellation of physical abnormalities that develop in infants as a result of maternal infection and subsequent fetal infection with rubella virus. The congenital lesions involve vital organs such as heart, eye, ear, brain and endocrine system and less frequently, teeth. The severity of systemic involvement depends on the stage of gestation at which maternal rubella infection occurs. With the implementation of immunization programs worldwide, its incidence has been dramatically reduced during the past half century. This article provides an insight into the prolonged effect of the virus on ameloblasts by highlighting the presence of hypoplastic enamel in primary teeth and erupting permanent teeth in a female child diagnosed with congenital rubella syndrome.


Assuntos
Hipoplasia do Esmalte Dentário/etiologia , Síndrome da Rubéola Congênita/complicações , Dente Decíduo/anormalidades , Pré-Escolar , Resinas Compostas/química , Coroas , Materiais Dentários/química , Restauração Dentária Permanente/métodos , Feminino , Seguimentos , Humanos , Planejamento de Assistência ao Paciente , Técnica para Retentor Intrarradicular , Pulpectomia
7.
Elife ; 112022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35001871

RESUMO

Parvalbumin-positive (PV+) γ-aminobutyric acid (GABA) interneurons are critically involved in producing rapid network oscillations and cortical microcircuit computations, but the significance of PV+ axon myelination to the temporal features of inhibition remains elusive. Here, using toxic and genetic mouse models of demyelination and dysmyelination, respectively, we find that loss of compact myelin reduces PV+ interneuron presynaptic terminals and increases failures, and the weak phasic inhibition of pyramidal neurons abolishes optogenetically driven gamma oscillations in vivo. Strikingly, during behaviors of quiet wakefulness selectively theta rhythms are amplified and accompanied by highly synchronized interictal epileptic discharges. In support of a causal role of impaired PV-mediated inhibition, optogenetic activation of myelin-deficient PV+ interneurons attenuated the power of slow theta rhythms and limited interictal spike occurrence. Thus, myelination of PV axons is required to consolidate fast inhibition of pyramidal neurons and enable behavioral state-dependent modulation of local circuit synchronization.


The brain contains billions of neurons that connect with each other via cable-like structures called axons. Axons transmit electrical impulses and are often wrapped in a fatty substance called myelin. This insulation increases the speed of nerve impulses and reduces the energy lost over long distances. Loss or damage of the myelin layer ­ as is the case for multiple sclerosis, a chronic neuroinflammatory and neurodegenerative disease of the central nervous system ­ can cause serious disability. However, a fast-firing neuron within the brain, called PV+ interneuron, has short, sparsely myelinated axons. Even so, PV+ interneurons are powerful inhibitors that regulate important cognitive processes in gray matter areas, including the outermost parts, in the cortex. Yet it remains unclear how the unusual, patchy myelination affects their function. To examine these questions, Dubey et al. used genetically engineered mice either lacking or losing myelin and studied the impact on PV+ interneurons and slow brain waves. As mice progressively lost myelin, the speed of inhibitory signals from PV+ interneurons did not change but their signal strength decreased. As a result, the power of slow brain waves, no longer inhibited by PV+ interneurons, increased. These waves also triggered spikes of epileptic-like brain activity when the mice were inactive and quiet. Restoring the activity of myelin-deficient PV+ interneurons helped to reverse these deficits. This suggests that myelination, however patchy on PV+ interneurons, is required to reach their full inhibitory potential. Moreover, the findings shed light on how myelin loss might underpin aberrant brain activity, which have been observed in people with multiple sclerosis. More research could help determine whether these epilepsy-like spikes could be a biomarker of multiple sclerosis and/or a target for developing new therapeutic strategies to limit cognitive impairments.


Assuntos
Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Bainha de Mielina/metabolismo , Parvalbuminas/metabolismo , Células Piramidais/fisiologia , Animais , Feminino , Masculino , Camundongos
8.
Ann Clin Transl Neurol ; 4(7): 450-465, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28695146

RESUMO

OBJECTIVE: Megalencephalic leukoencephalopathy with cysts (MLC) is a genetic infantile-onset disease characterized by macrocephaly and white matter edema due to loss of MLC1 function. Recessive mutations in either MLC1 or GLIALCAM cause the disease. MLC1 is involved in astrocytic volume regulation; GlialCAM ensures the correct membrane localization of MLC1. Their exact role in brain ion-water homeostasis is only partly defined. We characterized Glialcam-null mice for further studies. METHODS: We investigated the consequences of loss of GlialCAM in Glialcam-null mice and compared GlialCAM developmental expression in mice and men. RESULTS: Glialcam-null mice had early-onset megalencephaly and increased brain water content. From 3 weeks, astrocytes were abnormal with swollen processes abutting blood vessels. Concomitantly, progressive white matter vacuolization developed due to intramyelinic edema. Glialcam-null astrocytes showed abolished expression of MLC1, reduced expression of the chloride channel ClC-2 and increased expression and redistribution of the water channel aquaporin4. Expression of other MLC1-interacting proteins and the volume regulated anion channel LRRC8A was unchanged. In mice, GlialCAM expression increased until 3 weeks and then stabilized. In humans, GlialCAM expression was highest in the first 3 years to then decrease and stabilize from approximately 5 years. INTERPRETATION: Glialcam-null mice replicate the early stages of the human disease with early-onset intramyelinic edema. The earliest change is astrocytic swelling, further substantiating that a defect in astrocytic volume regulation is the primary cellular defect in MLC. GlialCAM expression affects expression of MLC1, ClC-2 and aquaporin4, indicating that abnormal interplay between these proteins is a disease mechanism in megalencephalic leukoencephalopathy with cysts.

9.
Food Chem Toxicol ; 50(12): 4449-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22982480

RESUMO

The present study evaluates combination therapy with a chelating agent, MiADMSA and a Na(+) ionophore, monensin against sub-chronic lead toxicity in rats. Animals were exposed to 0.1% lead in drinking water for 16 weeks and then treated with either MiADMSA at 50mg/kg body weight, or monensin at 10mg/kg, or both in combination for a period of 5 days was administered. Biomarkers indicative of oxidative stress like ROS, GSH, GSSG and TBARS demonstrated lead-induced toxic manifestations in blood, kidney and brain. Antioxidants like SOD, catalase and glutathione peroxidase along with specific lead biomarker, blood ALAD were also severely depleted in lead intoxicated animals. Serum parameters and histopathological findings supported the said results. MiADMSA treatment during both mono- and combination therapy with monensin, restored the antioxidant status and recovered biochemical and haematological variables due to lead. However, monensin alone was not found to be effective in the given scenario. Interestingly, combination therapy in its ability to revert lead-induced overall systemic toxicity was only found at par with the MiADMSA monotherapy except for its chelation potential. Monensin given in combination with MiADMSA potentiated its lead chelation ability especially from brain, along with maintaining the normal copper concentrations in the organ unlike MiADMSA monotherapy.


Assuntos
Encéfalo/efeitos dos fármacos , Quelantes/farmacologia , Chumbo/toxicidade , Monensin/farmacologia , Succímero/análogos & derivados , Animais , Antioxidantes/farmacologia , Biomarcadores/sangue , Encéfalo/patologia , Dano ao DNA/efeitos dos fármacos , Glutationa/sangue , Dissulfeto de Glutationa/sangue , Glutationa Peroxidase/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Succímero/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa