Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 592(7854): 450-456, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33762733

RESUMO

Hepatocellular carcinoma (HCC) can have viral or non-viral causes1-5. Non-alcoholic steatohepatitis (NASH) is an important driver of HCC. Immunotherapy has been approved for treating HCC, but biomarker-based stratification of patients for optimal response to therapy is an unmet need6,7. Here we report the progressive accumulation of exhausted, unconventionally activated CD8+PD1+ T cells in NASH-affected livers. In preclinical models of NASH-induced HCC, therapeutic immunotherapy targeted at programmed death-1 (PD1) expanded activated CD8+PD1+ T cells within tumours but did not lead to tumour regression, which indicates that tumour immune surveillance was impaired. When given prophylactically, anti-PD1 treatment led to an increase in the incidence of NASH-HCC and in the number and size of tumour nodules, which correlated with increased hepatic CD8+PD1+CXCR6+, TOX+, and TNF+ T cells. The increase in HCC triggered by anti-PD1 treatment was prevented by depletion of CD8+ T cells or TNF neutralization, suggesting that CD8+ T cells help to induce NASH-HCC, rather than invigorating or executing immune surveillance. We found similar phenotypic and functional profiles in hepatic CD8+PD1+ T cells from humans with NAFLD or NASH. A meta-analysis of three randomized phase III clinical trials that tested inhibitors of PDL1 (programmed death-ligand 1) or PD1 in more than 1,600 patients with advanced HCC revealed that immune therapy did not improve survival in patients with non-viral HCC. In two additional cohorts, patients with NASH-driven HCC who received anti-PD1 or anti-PDL1 treatment showed reduced overall survival compared to patients with other aetiologies. Collectively, these data show that non-viral HCC, and particularly NASH-HCC, might be less responsive to immunotherapy, probably owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance. Our data provide a rationale for stratification of patients with HCC according to underlying aetiology in studies of immunotherapy as a primary or adjuvant treatment.


Assuntos
Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Imunoterapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese/imunologia , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/imunologia , Progressão da Doença , Humanos , Fígado/imunologia , Fígado/patologia , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Fator de Necrose Tumoral alfa/imunologia
2.
Nature ; 592(7854): 444-449, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33762736

RESUMO

Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer1,2. The accumulation of metabolites leads to cell stress and inflammation in the liver3, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology. We detected the hepatic accumulation of CD8 T cells with phenotypes that combined tissue residency (CXCR6) with effector (granzyme) and exhaustion (PD1) characteristics. Liver CXCR6+ CD8 T cells were characterized by low activity of the FOXO1 transcription factor, and were abundant in NASH mice and in patients with NASH. Mechanistically, IL-15 induced FOXO1 downregulation and CXCR6 upregulation, which together rendered liver-resident CXCR6+ CD8 T cells susceptible to metabolic stimuli (including acetate and extracellular ATP) and collectively triggered auto-aggression. CXCR6+ CD8 T cells from the livers of NASH mice or of patients with NASH had similar transcriptional signatures, and showed auto-aggressive killing of cells in an MHC-class-I-independent fashion after signalling through P2X7 purinergic receptors. This killing by auto-aggressive CD8 T cells fundamentally differed from that by antigen-specific cells, which mechanistically distinguishes auto-aggressive and protective T cell immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Fígado/imunologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores CXCR6/imunologia , Acetatos/farmacologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Interleucina-15/imunologia , Interleucina-15/farmacologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Nature ; 588(7836): 151-156, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33149305

RESUMO

Lymphotoxin ß-receptor (LTßR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTßR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTßR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTßR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTßR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTßR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTßR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFß signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/ß-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTßR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Receptor beta de Linfotoxina/antagonistas & inibidores , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/agonistas , Imunidade Adaptativa , Envelhecimento/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose/efeitos dos fármacos , Enfisema/metabolismo , Feminino , Humanos , Imunidade Inata , Pulmão/metabolismo , Receptor beta de Linfotoxina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
4.
J Hepatol ; 79(2): 538-551, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893854

RESUMO

The liver is the central metabolic organ of the body, regulating energy and lipid metabolism, while also having potent immunological functions. Overwhelming the metabolic capacity of the liver via obesity and a sedentary lifestyle leads to hepatic lipid accumulation, chronic necro-inflammation, enhanced mitochondrial/endoplasmic reticulum stress and development of non-alcoholic fatty liver disease (NAFLD), and its more severe form non-alcoholic steatohepatitis (NASH). Based on an improved understanding of pathophysiological mechanisms, specifically targeting metabolic pathways to prevent or slow down the progression of NAFLD to liver cancer will become possible. Genetic/environmental factors are also known to contribute to the development of NASH and progression to liver cancer. The complex pathophysiology of NAFLD-NASH is reflected by environmental factors, particularly the gut microbiome and its metabolic products. NAFLD-associated HCC most often occurs in the context of a chronically inflamed and cirrhotic liver. Recognition of environmental alarmins or metabolites derived from the gut microbiota and the metabolically injured liver create a strong inflammatory milieu supported by innate and adaptive immunity. Several recent studies indicate that chronic steatosis induces auto-aggressive CD8+CXCR6+PD1+ T cells that eliminate parenchymal and non-parenchymal cells in an antigen-independent manner. This promotes chronic liver damage and a pro-tumorigenic environment. CD8+CXCR6+PD1+ T cells possess an exhausted, hyperactivated, resident phenotype; they trigger the NASH to HCC transition and might be responsible for weaker responses to immune checkpoint inhibitors - in particular atezolizumab/bevacizumab. Here, we provide an overview of NASH-related inflammation/pathogenesis, focusing on new discoveries on the role of T cells. This review discusses preventive measures to halt disease progression to liver cancer and therapeutic strategies to manage patients with NASH-HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Fígado/patologia , Inflamação/metabolismo , Imunidade
7.
8.
J Hepatol ; 66(5): 978-986, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28025060

RESUMO

BACKGROUND & AIMS: Liver sinusoidal endothelial cells (LSECs) are prominent liver-resident antigen (cross-)presenting cells. LSEC cross-priming of naïve CD8 T cells does not require CD4 T cell help in contrast to priming by dendritic cells (DC) but leads to the formation of memory T cells that is preceded by transient Granzyme B (GzmB) expression. Here we provide evidence for a so far unrecognized CD4 T helper cell function in LSEC-induced CD8 T cell activation. METHODS: Naïve CD8 T cells and differentiated T helper 1 (Th1) cells were stimulated by antigen-presenting LSEC, and GzmB expression in CD8 T cells was determined by flow cytometry. To identify molecular pathways mediating this GzmB expression, mechanistic proof-of-concept experiments were conducted using stimulatory anti-CD3 antibody together with Hyper-IL-6. RESULTS: We demonstrate that LSECs simultaneously function in antigen co-presentation to CD8 and CD4 T cells. Such co-presentation revealed a function of Th1 cells to increase GzmB expression in CD8 T cells after LSEC but not DC cross-priming. IL-2 released from Th1 cells was required but not sufficient for rapid GzmB induction in CD8 T cells. T cell receptor together with IL-6 trans-signaling was necessary for IL-2 to mediate rapid GzmB induction. CONCLUSIONS: Our findings indicate that LSECs can serve as a platform to facilitate CD4-CD8 T cell crosstalk enhancing the immune function of LSECs to cross-prime CD8 T cells. IL-6 trans-signaling-mediated responsiveness for IL-2 inducing sustained GzmB expression in CD8 T cells reveals unique mechanisms of CD4 T cell help and CD8 T cell differentiation through liver-resident antigen-presenting cells. LAY SUMMARY: Our findings demonstrate that LSEC co-present antigen to CD8 and CD4 T cells and thereby enable CD4 T cell help for LSEC-priming of CD8 T cells. This CD4 T cell help selectively enhances the rapid upregulation of GzmB and effector function of LSEC-primed CD8 T cells thereby enhancing functional differentiation towards CD8 effector T cells.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Apresentação Cruzada , Células Endoteliais/imunologia , Interleucina-2/fisiologia , Fígado/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular , Células Cultivadas , Granzimas/análise , Camundongos , Camundongos Endogâmicos C57BL
9.
Proteins ; 82(10): 2497-511, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24863377

RESUMO

A molecular mechanics model, previously validated in applications to structure prediction, is shown to reproduce experiment in predictions of protein ionization state, and in predictions of sequence and pH dependence of protein stability. Over a large dataset, 1876 values of ΔΔG of folding, the RMSD is 1.34 kcal/mol. Using an alternative measure of accuracy, either the sign of the calculated ΔΔG agrees with experiment or the absolute value of the deviation is less than 1.0 kcal/mol, 1660 of 1876 data points (88.5%) pass the condition. Relative to models used previously in computer-aided protein design, the concept, we propose, most responsible for the performance of our model, and for the extensibility to non-neutral values of pH, is the treatment of electrostatic energy. The electronic structure of the protein is modeled using distributed atomic multipoles. The structured liquid state of the solvent is modeled using a dielectric continuum. A modification to the energetics of the reaction field, induced by the protein in the dielectric continuum, attempts to account for preformed multipoles of solvent water molecules and ions. An adjustable weight (with optimal value.141) applied to the total vacuum energy accounts implicitly for electronic polarization. A threshold distance, beyond which pairwise atomic interactions are neglected, is not used. In searches through subspaces of sequences and conformations, efficiency remains acceptable for useful applications.


Assuntos
Estabilidade Proteica , Proteínas/química , Ribonucleases/química , Análise de Sequência de Proteína , Eletricidade Estática , Humanos , Concentração de Íons de Hidrogênio , Modelos Químicos , Modelos Moleculares , Modelos Teóricos , Simulação de Dinâmica Molecular , Conformação Proteica , Solventes/química
10.
Nat Biotechnol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714896

RESUMO

Proteomics is making important contributions to drug discovery, from target deconvolution to mechanism of action (MoA) elucidation and the identification of biomarkers of drug response. Here we introduce decryptE, a proteome-wide approach that measures the full dose-response characteristics of drug-induced protein expression changes that informs cellular drug MoA. Assaying 144 clinical drugs and research compounds against 8,000 proteins resulted in more than 1 million dose-response curves that can be interactively explored online in ProteomicsDB and a custom-built Shiny App. Analysis of the collective data provided molecular explanations for known phenotypic drug effects and uncovered new aspects of the MoA of human medicines. We found that histone deacetylase inhibitors potently and strongly down-regulated the T cell receptor complex resulting in impaired human T cell activation in vitro and ex vivo. This offers a rational explanation for the efficacy of histone deacetylase inhibitors in certain lymphomas and autoimmune diseases and explains their poor performance in treating solid tumors.

11.
Cancer Res ; 84(14): 2297-2312, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005053

RESUMO

Metabolic reprogramming is a hallmark of cancer and is crucial for cancer progression, making it an attractive therapeutic target. Understanding the role of metabolic reprogramming in cancer initiation could help identify prevention strategies. To address this, we investigated metabolism during acinar-to-ductal metaplasia (ADM), the first step of pancreatic carcinogenesis. Glycolytic markers were elevated in ADM lesions compared with normal tissue from human samples. Comprehensive metabolic assessment in three mouse models with pancreas-specific activation of KRAS, PI3K, or MEK1 using Seahorse measurements, nuclear magnetic resonance metabolome analysis, mass spectrometry, isotope tracing, and RNA sequencing analysis revealed a switch from oxidative phosphorylation to glycolysis in ADM. Blocking the metabolic switch attenuated ADM formation. Furthermore, mitochondrial metabolism was required for de novo synthesis of serine and glutathione (GSH) but not for ATP production. MYC mediated the increase in GSH intermediates in ADM, and inhibition of GSH synthesis suppressed ADM development. This study thus identifies metabolic changes and vulnerabilities in the early stages of pancreatic carcinogenesis. Significance: Metabolic reprogramming from oxidative phosphorylation to glycolysis mediated by MYC plays a crucial role in the development of pancreatic cancer, revealing a mechanism driving tumorigenesis and potential therapeutic targets. See related commentary by Storz, p. 2225.


Assuntos
Metaplasia , Neoplasias Pancreáticas , Animais , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Camundongos , Metaplasia/metabolismo , Metaplasia/patologia , Glicólise , Carcinogênese/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Fosforilação Oxidativa , Glutationa/metabolismo , Reprogramação Celular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Reprogramação Metabólica
12.
Cell Rep ; 38(7): 110389, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172161

RESUMO

Liver sinusoidal endothelial cells (LSECs) are liver-resident antigen (cross)-presenting cells that generate memory CD8 T cells, but metabolic properties of LSECs and LSEC-primed CD8 T cells remain understudied. Here, we report that high-level mitochondrial respiration and constitutive low-level glycolysis support LSEC scavenger and sentinel functions. LSECs fail to increase glycolysis and co-stimulation after TLR4 activation, indicating absence of metabolic and functional maturation compared with immunogenic dendritic cells. LSEC-primed CD8 T cells show a transient burst of oxidative phosphorylation and glycolysis. Mechanistically, co-stimulatory IL-6 signaling ensures high FOXO1 expression in LSEC-primed CD8 T cells, curtails metabolic activity associated with T cell activation, and is indispensable for T cell functionality after re-activation. Thus, distinct immunometabolic features characterize non-immunogenic LSECs compared with immunogenic dendritic cells and LSEC-primed CD8 T cells with memory features compared with effector CD8 T cells. This reveals local features of metabolism and function of T cells in the liver.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Apresentação Cruzada/imunologia , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Interleucina-6/metabolismo , Fígado/citologia , Animais , Diferenciação Celular/genética , Respiração Celular , Células Endoteliais/citologia , Células Endoteliais/ultraestrutura , Glicólise , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Transcrição Gênica
13.
Nat Metab ; 3(12): 1596-1607, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931080

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has emerged pandemically across the globe and particularly affects patients with obesity and type 2 diabetes. NAFLD is a complex systemic disease that is characterised by hepatic lipid accumulation, lipotoxicity, insulin resistance, gut dysbiosis and inflammation. In this review, we discuss how metabolic dysregulation, the gut microbiome, innate and adaptive immunity and their interplay contribute to NAFLD pathology. Lipotoxicity has been shown to instigate liver injury, inflammation and insulin resistance. Synchronous metabolic dysfunction, obesity and related nutritional perturbation may alter the gut microbiome, in turn fuelling hepatic and systemic inflammation by direct activation of innate and adaptive immune responses. We review evidence suggesting that, collectively, these unresolved exogenous and endogenous cues drive liver injury, culminating in liver fibrosis and advanced sequelae of this disorder such as liver cirrhosis and hepatocellular carcinoma. Understanding NAFLD as a complex interplay between metabolism, gut microbiota and the immune response will challenge the clinical perception of NAFLD and open new therapeutic avenues.


Assuntos
Suscetibilidade a Doenças , Metabolismo Energético , Imunidade , Microbiota , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Imunidade Adaptativa , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Microbioma Gastrointestinal , Humanos , Imunidade Inata , Resistência à Insulina , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/terapia , Obesidade/complicações , Obesidade/metabolismo , Açúcares/metabolismo
15.
Front Immunol ; 4: 307, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24137162

RESUMO

Immune responses at the intestinal mucosa must allow for host protection whilst simultaneously avoiding inappropriate inflammation. Although much work has focused on the innate immune functionality of hematopoietic immune cells, non-hematopoietic cell populations - including epithelial and stromal cells - are now recognized as playing a key role in innate defense at this site. In this study we examined the innate immune capacity of primary human intestinal stromal cells (iSCs). CD90(+) iSCs isolated from human colonic mucosa expressed a wide array of innate immune receptors and functionally responded to stimulation with bacterial ligands. iSCs also sensed infection with live Salmonella typhimurium, rapidly expressing IL-1 family cytokines via a RIPK2/p38MAPK-dependent signaling process. In addition to responding to innate immune triggers, primary iSCs exhibited a capacity for bacterial uptake, phagocytosis, and antigen processing, although to a lesser extent than professional APCs. Thus CD90(+) iSCs represent an abundant population of "non-professional" innate immune effector cells of the human colonic mucosa and likely play an important adjunctive role in host defense and immune regulation at this site.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa