Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(21): 3291-3300, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35594508

RESUMO

Correlating star-shaped donor-bridge-acceptor (DBA) molecular structures with intramolecular charge transfer (ICT) and intersystem crossing (ISC) is essential to their application in photocatalysis, photovoltaics, and organic light-emitting diodes (OLEDs). In this work, we report a systematic photophysical study on a series of star-shaped triazine-phenylene-carbazole DBA molecules with 0, 1, and 2 bridging phenylene units (pTCT-0P, pTCT-1P, pTCT-2P). Using a combination of steady-state and time-resolved spectroscopy with time-dependent density functional theory (TDDFT), we find that the bridge length can strongly impact the structural conformation, ICT, and ISC. Global target analysis of the time-resolved spectroscopy reveals that pTCT-0P has the most favorable ISC rate of 1.96 × 10-4 ps-1, which is competitive with a singlet relaxation rate of 1.92 × 10-4 ps-1. TDDFT aligns with spectroscopic results within an order of magnitude, predicting an ISC rate of 2.1 × 10-5 ps-1 and revealing that the donor/acceptor orthogonalization concomitantly suppresses singlet exciton recombination and lowers the singlet-triplet energy gap. The new fundamental insights gained from this work will help design the next generation of star-shaped DBA-type molecules for photocatalytic and photoelectronic applications.

2.
J Phys Chem Lett ; 13(6): 1398-1405, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35119279

RESUMO

The generation of a long-lived charge-separated state in versatile π-conjugated two-dimensional covalent organic frameworks (2D COFs), a process essential to extending their great potentials in advanced semiconducting applications, is yet fully elucidated. Herein, we report a systematic investigation of the photophysical properties of three highly crystalline imine-linked 2D COFs using steady-state and transient absorption spectroscopy accompanied by time-dependent density functional theory (TDDFT) calculations. The different electron affinity between 5,5',5″-(1,3,5-benzenetriyl)tris(2-pyridinecarboxaldehyde) (BTPA) and three tunable electron-donating/accepting triamine monomers dominated the formation of the excited-state, charge-transfer direction, and lifetime. A prominent charge transfer from electron-rich 4,4',4″-triaminotriphenylamine (TAPA) to BTPA in COFTAPA-BTPA led to the long-lived charge-separated state, which was attributed to a greater degree of delocalization compared to the two other COFs. These results provide fundamental insight into the importance of structure-property correlation for designing advanced photoactive 2D COF materials with the efficient charge transfer and long-lived charge-separated state.

3.
Sci Rep ; 7(1): 16577, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29185453

RESUMO

YAP is a downstream nuclear transcription factor of Hippo pathway which plays an essential role in development, cell growth, organ size and homeostasis. It was previously identified that elevation of YAP in genomics of genetic engineered mouse (GEM) model of prostate cancer is associated with Pten/Trp53 inactivation and ARF elevation hypothesizing the essential crosstalk of AKT/mTOR/YAP with ARF in prostate cancer. However, the detailed function and trafficking of YAP in cancer cells remains unclear. Using GEM microarray model, we found ARF dysregulates Hippo and Wnt pathways. In particular, ARF knockdown reduced non-nuclear localization of YAP which led to an increase in F-actin. Mechanistically, ARF knockdown suppressed protein turnover of ß-catenin/YAP, and therefore enhanced the activity of AKT and phosphorylation of YAP. Moreover, we found tea-derived carbon dots can interact with ARF in nucleus that may further lead to the non-nuclear localization of YAP. Thus, we reported a novel crosstalk of ARF/ß-catenin dysregulated YAP in Hippo pathway and a new approach to stimulate ARF-mediated signaling to inhibit nuclear YAP using nanomaterials implicating an innovative avenue for treatment of cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carbono/química , Nanotecnologia/métodos , Fosfoproteínas/metabolismo , Chá/química , Animais , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p19/genética , Inibidor de Quinase Dependente de Ciclina p19/metabolismo , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Via de Sinalização Hippo , Masculino , Camundongos , Microscopia Confocal , Neoplasias da Próstata/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa