Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mutat ; 43(6): 674-681, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35165961

RESUMO

A major challenge in validating genetic causes for patients with rare diseases (RDs) is the difficulty in identifying other RD patients with overlapping phenotypes and variants in the same candidate gene. This process, known as matchmaking, requires robust data sharing solutions to be effective. In 2014 we launched PhenomeCentral, a RD data repository capable of collecting computer-readable genotypic and phenotypic data for the purposes of RD matchmaking. Over the past 7 years PhenomeCentral's features have been expanded and its data set has consistently grown. There are currently 1615 users registered on PhenomeCentral, which have contributed over 12,000 patient cases. Most of these cases contain detailed phenotypic terms, with a significant portion also providing genomic sequence data or other forms of clinical information. Matchmaking within PhenomeCentral, and with connections to other data repositories in the Matchmaker Exchange, have collectively resulted in over 60,000 matches, which have facilitated multiple gene discoveries. The collection of deep phenotypic and genotypic data has also positioned PhenomeCentral well to support next generation of matchmaking initiatives that utilize genome sequencing data, ensuring that PhenomeCentral will remain a useful tool in solving undiagnosed RD cases in the years to come.


Assuntos
Disseminação de Informação , Doenças Raras , Genômica/métodos , Genótipo , Humanos , Disseminação de Informação/métodos , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/genética
2.
Hum Mutat ; 36(10): 922-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26255989

RESUMO

Despite the increasing prevalence of clinical sequencing, the difficulty of identifying additional affected families is a key obstacle to solving many rare diseases. There may only be a handful of similar patients worldwide, and their data may be stored in diverse clinical and research databases. Computational methods are necessary to enable finding similar patients across the growing number of patient repositories and registries. We present the Matchmaker Exchange Application Programming Interface (MME API), a protocol and data format for exchanging phenotype and genotype profiles to enable matchmaking among patient databases, facilitate the identification of additional cohorts, and increase the rate with which rare diseases can be researched and diagnosed. We designed the API to be straightforward and flexible in order to simplify its adoption on a large number of data types and workflows. We also provide a public test data set, curated from the literature, to facilitate implementation of the API and development of new matching algorithms. The initial version of the API has been successfully implemented by three members of the Matchmaker Exchange and was immediately able to reproduce previously identified matches and generate several new leads currently being validated. The API is available at https://github.com/ga4gh/mme-apis.


Assuntos
Biologia Computacional/métodos , Disseminação de Informação/métodos , Doenças Raras/genética , Algoritmos , Bases de Dados Genéticas , Predisposição Genética para Doença , Genótipo , Humanos , Fenótipo , Doenças Raras/patologia , Navegador
3.
Hum Mutat ; 36(10): 931-40, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26251998

RESUMO

The discovery of disease-causing mutations typically requires confirmation of the variant or gene in multiple unrelated individuals, and a large number of rare genetic diseases remain unsolved due to difficulty identifying second families. To enable the secure sharing of case records by clinicians and rare disease scientists, we have developed the PhenomeCentral portal (https://phenomecentral.org). Each record includes a phenotypic description and relevant genetic information (exome or candidate genes). PhenomeCentral identifies similar patients in the database based on semantic similarity between clinical features, automatically prioritized genes from whole-exome data, and candidate genes entered by the users, enabling both hypothesis-free and hypothesis-driven matchmaking. Users can then contact other submitters to follow up on promising matches. PhenomeCentral incorporates data for over 1,000 patients with rare genetic diseases, contributed by the FORGE and Care4Rare Canada projects, the US NIH Undiagnosed Diseases Program, the EU Neuromics and ANDDIrare projects, as well as numerous independent clinicians and scientists. Though the majority of these records have associated exome data, most lack a molecular diagnosis. PhenomeCentral has already been used to identify causative mutations for several patients, and its ability to find matching patients and diagnose these diseases will grow with each additional patient that is entered.


Assuntos
Predisposição Genética para Doença/genética , Disseminação de Informação/métodos , Doenças Raras/genética , Bases de Dados Genéticas , Variação Genética , Genótipo , Humanos , Fenótipo , Software , Interface Usuário-Computador , Navegador
4.
Hum Mutat ; 36(10): 915-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26295439

RESUMO

There are few better examples of the need for data sharing than in the rare disease community, where patients, physicians, and researchers must search for "the needle in a haystack" to uncover rare, novel causes of disease within the genome. Impeding the pace of discovery has been the existence of many small siloed datasets within individual research or clinical laboratory databases and/or disease-specific organizations, hoping for serendipitous occasions when two distant investigators happen to learn they have a rare phenotype in common and can "match" these cases to build evidence for causality. However, serendipity has never proven to be a reliable or scalable approach in science. As such, the Matchmaker Exchange (MME) was launched to provide a robust and systematic approach to rare disease gene discovery through the creation of a federated network connecting databases of genotypes and rare phenotypes using a common application programming interface (API). The core building blocks of the MME have been defined and assembled. Three MME services have now been connected through the API and are available for community use. Additional databases that support internal matching are anticipated to join the MME network as it continues to grow.


Assuntos
Predisposição Genética para Doença/genética , Disseminação de Informação/métodos , Doenças Raras/genética , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Estudos de Associação Genética , Humanos , Software
5.
Hum Mutat ; 34(8): 1057-65, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23636887

RESUMO

We have developed PhenoTips: open source software for collecting and analyzing phenotypic information for patients with genetic disorders. Our software combines an easy-to-use interface, compatible with any device that runs a Web browser, with a standardized database back end. The PhenoTips' user interface closely mirrors clinician workflows so as to facilitate the recording of observations made during the patient encounter. Collected data include demographics, medical history, family history, physical and laboratory measurements, physical findings, and additional notes. Phenotypic information is represented using the Human Phenotype Ontology; however, the complexity of the ontology is hidden behind a user interface, which combines simple selection of common phenotypes with error-tolerant, predictive search of the entire ontology. PhenoTips supports accurate diagnosis by analyzing the entered data, then suggesting additional clinical investigations and providing Online Mendelian Inheritance in Man (OMIM) links to likely disorders. By collecting, classifying, and analyzing phenotypic information during the patient encounter, PhenoTips allows for streamlining of clinic workflow, efficient data entry, improved diagnosis, standardization of collected patient phenotypes, and sharing of anonymized patient phenotype data for the study of rare disorders. Our source code and a demo version of PhenoTips are available at http://phenotips.org.


Assuntos
Bases de Dados Genéticas , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Pesquisa em Genética , Fenótipo , Software , Interface Usuário-Computador , Algoritmos , Criança , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Ontologia Genética , Humanos , Armazenamento e Recuperação da Informação
6.
Front Med (Lausanne) ; 3: 39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27785453

RESUMO

The National Institutes of Health Undiagnosed Diseases Program (NIH UDP) applies translational research systematically to diagnose patients with undiagnosed diseases. The challenge is to implement an information system enabling scalable translational research. The authors hypothesized that similar complex problems are resolvable through process management and the distributed cognition of communities. The team, therefore, built the NIH UDP integrated collaboration system (UDPICS) to form virtual collaborative multidisciplinary research networks or communities. UDPICS supports these communities through integrated process management, ontology-based phenotyping, biospecimen management, cloud-based genomic analysis, and an electronic laboratory notebook. UDPICS provided a mechanism for efficient, transparent, and scalable translational research and thereby addressed many of the complex and diverse research and logistical problems of the NIH UDP. Full definition of the strengths and deficiencies of UDPICS will require formal qualitative and quantitative usability and process improvement measurement.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa