Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant Cell ; 33(11): 3402-3420, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34436604

RESUMO

Plant RNA viruses form organized membrane-bound replication complexes to replicate their genomes. This process requires virus- and host-encoded proteins and leads to the production of double-stranded RNA (dsRNA) replication intermediates. Here, we describe the use of Arabidopsis thaliana expressing GFP-tagged dsRNA-binding protein (B2:GFP) to pull down dsRNA and associated proteins in planta upon infection with Tobacco rattle virus (TRV). Mass spectrometry analysis of the dsRNA-B2:GFP-bound proteins from infected plants revealed the presence of viral proteins and numerous host proteins. Among a selection of nine host candidate proteins, eight showed relocalization upon infection, and seven of these colocalized with B2-labeled TRV replication complexes. Infection of A. thaliana T-DNA mutant lines for eight such factors revealed that genetic knockout of dsRNA-BINDING PROTEIN 2 (DRB2) leads to increased TRV accumulation and DRB2 overexpression caused a decrease in the accumulation of four different plant RNA viruses, indicating that DRB2 has a potent and wide-ranging antiviral activity. We propose B2:GFP-mediated pull down of dsRNA to be a versatile method to explore virus replication complex proteomes and to discover key host virus replication factors. Given the universality of dsRNA, development of this tool holds great potential to investigate RNA viruses in other host organisms.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Interações Hospedeiro-Patógeno , Defesa das Plantas contra Herbivoria/genética , Vírus de Plantas/fisiologia , RNA de Cadeia Dupla/genética , RNA de Plantas/genética , Proteínas de Ligação a RNA/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Replicação Viral
2.
Plant J ; 95(2): 204-218, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29682831

RESUMO

In the model plant Arabidopsis thaliana, four Dicer-like proteins (DCL1-4) mediate the production of various classes of small RNAs (sRNAs). Among these four proteins, DCL4 is by far the most versatile RNaseIII-like enzyme, and previously identified dcl4 missense alleles were shown to uncouple the production of the various classes of DCL4-dependent sRNAs. Yet little is known about the molecular mechanism behind this uncoupling. Here, by studying the subcellular localization, interactome and binding to the sRNA precursors of three distinct dcl4 missense alleles, we simultaneously highlight the absolute requirement of a specific residue in the helicase domain for the efficient production of all DCL4-dependent sRNAs, and identify, within the PAZ domain, an important determinant of DCL4 versatility that is mandatory for the efficient processing of intramolecular fold-back double-stranded RNA (dsRNA) precursors, but that is dispensable for the production of small interfering RNAs (siRNAs) from RDR-dependent dsRNA susbtrates. This study not only provides insights into the DCL4 mode of action, but also delineates interesting tools to further study the complexity of RNA silencing pathways in plants, and possibly other organisms.


Assuntos
Proteínas de Arabidopsis/genética , Mutação de Sentido Incorreto , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/genética , Alelos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mutação de Sentido Incorreto/genética , RNA/metabolismo , Ribonuclease III/metabolismo , Especificidade por Substrato
3.
Nucleic Acids Res ; 45(3): 1330-1344, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180322

RESUMO

In plants, several dsRNA-binding proteins (DRBs) have been shown to play important roles in various RNA silencing pathways, mostly by promoting the efficiency and/or accuracy of Dicer-like proteins (DCL)-mediated small RNA production. Among the DRBs encoded by the Arabidopsis genome, we recently identified DRB7.2 whose function in RNA silencing was unknown. Here, we show that DRB7.2 is specifically involved in siRNA production from endogenous inverted-repeat (endoIR) loci. This function requires its interacting partner DRB4, the main cofactor of DCL4 and is achieved through specific sequestration of endoIR dsRNA precursors, thereby repressing their access and processing by the siRNA-generating DCLs. The present study also provides multiple lines of evidence showing that DRB4 is partitioned into, at least, two distinct cellular pools fulfilling different functions, through mutually exclusive binding with either DCL4 or DRB7.2. Collectively, these findings revealed that plants have evolved a specific DRB complex that modulates selectively the production of endoIR-siRNAs. The existence of such a complex and its implication regarding the still elusive biological function of plant endoIR-siRNA will be discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequências Repetidas Invertidas , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ribonuclease III/química , Ribonuclease III/genética , Ribonuclease III/metabolismo
6.
RNA Biol ; 14(12): 1637-1641, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28665774

RESUMO

Double-stranded RNA binding (DRB) proteins are generally considered as promoting cofactors of Dicer or Dicer-like (DCL) proteins that ensure efficient and precise production of small RNAs, the sequence-specificity guide of RNA silencing processes in both plants and animals. However, the characterization of a new clade of DRB proteins in Arabidopsis has recently challenged this view by showing that DRBs can also act as potent inhibitors of DCL processing. This is achieved through sequestration of a specific class of small RNA precursors, the endogenous inverted-repeat (endoIR) dsRNAs, thereby selectively preventing production of their associated small RNAs, the endoIR-siRNAs. Here, we concisely summarize the main findings obtained from the characterization of these new DRB proteins and discuss how the existence of such complexes can support a potential, yet still elusive, biological function of plant endoIR-siRNAs.


Assuntos
Plantas/genética , Plantas/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Família Multigênica , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Ribonuclease III/metabolismo
7.
Plant Mol Biol ; 91(1-2): 131-47, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26858002

RESUMO

In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6. We also identified a second new and highly conserved DRB family (we named DRB7) whose members possess a single dsRBM that shows concerted evolution with the most C-terminal dsRBM domain of the Dicer-like 4 (DCL4) proteins. Using a BiFC approach, we observed that Arabidopsis thaliana DRB7.2 (AtDRB7.2) can directly interact with AtDRB4 but not with AtDCL4 and we provide evidence that both AtDRB7.2 and AtDRB4 participate in the epigenetically activated siRNAs pathway.


Assuntos
Evolução Biológica , Plantas/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Filogenia , Plantas/classificação , Plantas/genética , Ligação Proteica , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Especificidade da Espécie
8.
EMBO J ; 31(11): 2553-65, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22531783

RESUMO

Plant viruses encode RNA silencing suppressors (VSRs) to counteract the antiviral RNA silencing response. Based on in-vitro studies, several VSRs were proposed to suppress silencing through direct binding of short-interfering RNAs (siRNAs). Because their expression also frequently hinders endogenous miRNA-mediated regulation and stabilizes labile miRNA* strands, VSRs have been assumed to prevent both siRNA and miRNA loading into their common effector protein, AGO1, through sequestration of small RNA (sRNA) duplexes in vivo. These assumptions, however, have not been formally tested experimentally. Here, we present a systematic in planta analysis comparing the effects of four distinct VSRs in Arabidopsis. While all of the VSRs tested compromised loading of siRNAs into AGO1, only P19 was found to concurrently prevent miRNA loading, consistent with a VSR strategy primarily based on sRNA sequestration. By contrast, we provide multiple lines of evidence that the action of the other VSRs tested is unlikely to entail siRNA sequestration, indicating that in-vitro binding assays and in-vivo miRNA* stabilization are not reliable indicator of VSR action. The contrasted effects of VSRs on siRNA versus miRNA loading into AGO1 also imply the existence of two distinct pools of cellular AGO1 that are specifically loaded by each class of sRNAs. These findings have important implications for our current understanding of RNA silencing and of its suppression in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , Vírus de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Interferência de RNA , RNA de Plantas/metabolismo
9.
Nucleic Acids Res ; 42(12): 7971-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24920830

RESUMO

RNA silencing is an evolutionarily conserved mechanism triggered by double-stranded RNA that is processed into 21- to 24-nt small interfering (si)RNA or micro (mi)RNA by RNaseIII-like enzymes called Dicers. Gene regulations by RNA silencing have fundamental implications in a large number of biological processes that include antiviral defense, maintenance of genome integrity and the orchestration of cell fates. Although most generic or core components of the various plant small RNA pathways have been likely identified over the past 15 years, factors involved in RNAi regulation through post-translational modifications are just starting to emerge, mostly through forward genetic studies. A genetic screen designed to identify factors required for RNAi in Arabidopsis identified the serine/threonine protein kinase, TOUSLED (TSL). Mutations in TSL affect exogenous and virus-derived siRNA activity in a manner dependent upon its kinase activity. By contrast, despite their pleiotropic developmental phenotype, tsl mutants show no defect in biogenesis or activity of miRNA or endogenous trans-acting siRNA. These data suggest a possible role for TSL phosphorylation in the specific regulation of exogenous and antiviral RNA silencing in Arabidopsis and identify TSL as an intrinsic regulator of RNA interference.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Pequeno RNA não Traduzido/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo
10.
Nat Genet ; 39(7): 848-56, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558406

RESUMO

In RNA interference (RNAi), double-stranded RNA (dsRNA) is processed into short interfering RNA (siRNA) to mediate sequence-specific gene knockdown. The genetics of plant RNAi is not understood, nor are the bases for its spreading between cells. Here, we unravel the requirements for biogenesis and action of siRNAs directing RNAi in Arabidopsis thaliana and show how alternative routes redundantly mediate this process under extreme dsRNA dosages. We found that SMD1 and SMD2, required for intercellular but not intracellular RNAi, are allelic to RDR2 and NRPD1a, respectively, previously implicated in siRNA-directed heterochromatin formation through the action of DCL3 and AGO4. However, neither DCL3 nor AGO4 is required for non-cell autonomous RNAi, uncovering a new pathway for RNAi spreading or detection in recipient cells. Finally, we show that the genetics of RNAi is distinct from that of antiviral silencing and propose that this experimental silencing pathway has a direct endogenous plant counterpart.


Assuntos
Arabidopsis/genética , Heterocromatina/fisiologia , MicroRNAs/fisiologia , Interferência de RNA/fisiologia , Transdução de Sinais/genética , Arabidopsis/citologia , Arabidopsis/fisiologia , Líquido Extracelular/fisiologia , Líquido Intracelular/fisiologia
11.
PLoS Pathog ; 9(6): e1003435, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785291

RESUMO

RNA silencing mediated by small RNAs (sRNAs) is a conserved regulatory process with key antiviral and antimicrobial roles in eukaryotes. A widespread counter-defensive strategy of viruses against RNA silencing is to deploy viral suppressors of RNA silencing (VSRs), epitomized by the P19 protein of tombusviruses, which sequesters sRNAs and compromises their downstream action. Here, we provide evidence that specific Nicotiana species are able to sense and, in turn, antagonize the effects of P19 by activating a highly potent immune response that protects tissues against Tomato bushy stunt virus infection. This immunity is salicylate- and ethylene-dependent, and occurs without microscopic cell death, providing an example of "extreme resistance" (ER). We show that the capacity of P19 to bind sRNA, which is mandatory for its VSR function, is also necessary to induce ER, and that effects downstream of P19-sRNA complex formation are the likely determinants of the induced resistance. Accordingly, VSRs unrelated to P19 that also bind sRNA compromise the onset of P19-elicited defense, but do not alter a resistance phenotype conferred by a viral protein without VSR activity. These results show that plants have evolved specific responses against the damages incurred by VSRs to the cellular silencing machinery, a likely necessary step in the never-ending molecular arms race opposing pathogens to their hosts.


Assuntos
Resistência à Doença/fisiologia , Nicotiana/metabolismo , Interferência de RNA/fisiologia , RNA de Plantas/metabolismo , Tombusvirus/metabolismo , Proteínas Virais/metabolismo , Morte Celular/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Ligação Proteica , RNA de Plantas/genética , Nicotiana/genética , Nicotiana/virologia , Tombusvirus/genética , Proteínas Virais/genética
12.
Nat Genet ; 38(2): 258-63, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16429161

RESUMO

Regulation of gene expression through microRNAs (miRNAs) and antiviral defense through small interfering RNAs (siRNAs) are aspects of RNA silencing, a process originally discovered as an unintended consequence of plant transformation by disarmed Agrobacterium tumefaciens strains. Although RNA silencing protects cells against foreign genetic elements, its defensive role against virulent, tumor-inducing bacteria has remained unexplored. Here, we show that siRNAs corresponding to transferred-DNA oncogenes initially accumulate in virulent A. tumefaciens-infected tissues and that RNA interference-deficient plants are hypersusceptible to the pathogen. Successful infection relies on a potent antisilencing state established in tumors whereby siRNA synthesis is specifically inhibited. This inhibition has only modest side effects on the miRNA pathway, shown here to be essential for disease development. The similarities and specificities of the A. tumefaciens RNA silencing interaction are discussed and contrasted with the situation encountered with plant viruses.


Assuntos
Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/patogenicidade , Regulação Bacteriana da Expressão Gênica , Tumores de Planta/microbiologia , Interferência de RNA , Arabidopsis/microbiologia , Íntrons/genética , MicroRNAs/genética , Mutação/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/microbiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/microbiologia , Caules de Planta/anatomia & histologia , Caules de Planta/microbiologia , Tumores de Planta/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Sequências Reguladoras de Ácido Nucleico/genética , Nicotiana/microbiologia , Virulência/genética
14.
EMBO J ; 29(10): 1699-712, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20414198

RESUMO

Recent work on metazoans has uncovered the existence of an endogenous RNA-silencing pathway that functionally recapitulates the effects of experimental RNA interference (RNAi) used for gene knockdown in organisms such as Caenorhabditis elegans and Drosophila. The endogenous short interfering (si)RNA involved in this pathway are processed by Dicer-like nucleases from genomic loci re-arranged to form extended inverted repeats (IRs) that produce perfect or near-perfect dsRNA molecules. Although such IR loci are commonly detected in plant genomes, their genetics, evolution and potential contribution to plant biology through endogenous silencing have remained largely unexplored. Through an exhaustive analysis performed using Arabidopsis, we provide here evidence that at least two such endogenous IRs are genetically virtually indistinguishable from the transgene constructs commonly used for RNAi in plants. We show how these loci can be useful probes of the cellular mechanism and fluidity of RNA-silencing pathways in plants, and provide evidence that they may arise and disappear on an ecotype scale, show highly cell-specific expression patterns and respond to various stresses. IR loci thus have the potential to act as molecular sensors of the local environments found within distinct ecological plant niches. We further show that the various siRNA size classes produced by at least one of these IR loci are functionally loaded into cognate effector proteins and mediate both post-transcriptional gene silencing and RNA-directed DNA methylation (RdDM) of endogenous as well as exogenous targets. Finally, and as previously reported during plant experimental RNAi, we provide evidence that endogenous IR-derived siRNAs of all size classes are not cell-autonomous and can be transported through graft junctions over long distances, in target tissues where they are functional, at least in mediating RdDM. Collectively, these results define the existence of a bona fide, endogenous and systemic RNAi pathway in plants that may have implications in adaptation, epiallelism and trans-generational memory.


Assuntos
Arabidopsis/genética , Plantas/genética , Interferência de RNA , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/metabolismo , Caenorhabditis elegans , Proteínas de Ciclo Celular/metabolismo , Metilação de DNA , Drosophila , Inativação Gênica , Dados de Sequência Molecular , Mutação , RNA Interferente Pequeno/metabolismo , Ribonuclease III/metabolismo , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Transgenes
15.
Nat Genet ; 37(12): 1356-60, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16273107

RESUMO

In RNA interference, the RNase-III enzyme Dicer processes exogenous double-stranded RNA into small interfering RNAs (siRNAs). siRNAs guide RNA-induced silencing complexes to cleave homologous transcripts, enabling gene-specific knock-down. In plants, double-stranded RNA is processed into siRNA species of 21 nucleotides (nt) and 24 nt (ref. 5), but, unlike in nematodes, the Dicer enzymes involved in this processing have not been identified. Additionally, in both plants and nematodes, systemic signals with RNA components convey the sequence-specific effects of RNA interference between cells. Here, we describe Arabidopsis thaliana mutants with altered silencing cell-to-cell movement beyond the vasculature. At least three SILENCING MOVEMENT DEFICIENT genes (SMD1, SMD2 and SMD3) are required for trafficking, the extent of which correlates with siRNA levels in the veins. Five alleles defective in synthesis of 21-nt, but not 24-nt, siRNAs carry mutations in Dicer-like 4 (DCL4) that are involved in biogenesis of trans-acting siRNAs. We show that the biogenesis and function of trans-acting siRNA can be genetically uncoupled from a bona fide DCL4-dependent pathway that accounts for RNA interference and for production of the 21-nt siRNA component of the plant cell-to-cell silencing signal.


Assuntos
Arabidopsis/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ribonucleases/metabolismo , Transdução de Sinais/genética , Alelos , Sequência de Bases , Movimento Celular/genética , Genes de Plantas/genética , RNA Interferente Pequeno/genética , Ribonuclease III , Ribonucleases/genética
17.
Trends Genet ; 24(4): 151-4, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18325623

RESUMO

In plants and some animals, posttranscriptional RNA silencing can be manifested beyond its sites of initiation, because of the movement of signaling molecules that must have RNA components to account for the nucleotide sequence specificity of their effects. In a recent study carried out in Arabidopsis thaliana, interesting clues were provided that suggest mechanisms by which systemic RNA silencing signals might be produced and perceived between distant plant organs.


Assuntos
Plantas/genética , Interferência de RNA , Heterocromatina/metabolismo , Transdução de Sinais , Transcrição Gênica
18.
Viruses ; 12(10)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023227

RESUMO

Tomato bushy stunt virus (TBSV), the type member of the genus Tombusvirus in the family Tombusviridae is one of the best studied plant viruses. The TBSV natural and experimental host range covers a wide spectrum of plants including agricultural crops, ornamentals, vegetables and Nicotiana benthamiana. However, Arabidopsis thaliana, the well-established model organism in plant biology, genetics and plant-microbe interactions is absent from the list of known TBSV host plant species. Most of our recent knowledge of the virus life cycle has emanated from studies in Saccharomyces cerevisiae, a surrogate host for TBSV that lacks crucial plant antiviral mechanisms such as RNA interference (RNAi). Here, we identified and characterized a TBSV isolate able to infect Arabidopsis with high efficiency. We demonstrated by confocal and 3D electron microscopy that in Arabidopsis TBSV-BS3Ng replicates in association with clustered peroxisomes in which numerous spherules are induced. A dsRNA-centered immunoprecipitation analysis allowed the identification of TBSV-associated host components including DRB2 and DRB4, which perfectly localized to replication sites, and NFD2 that accumulated in larger viral factories in which peroxisomes cluster. By challenging knock-out mutants for key RNAi factors, we showed that TBSV-BS3Ng undergoes a non-canonical RNAi defensive reaction. In fact, unlike other RNA viruses described, no 22nt TBSV-derived small RNA are detected in the absence of DCL4, indicating that this virus is DCL2-insensitive. The new Arabidopsis-TBSV-BS3Ng pathosystem should provide a valuable new model for dissecting plant-virus interactions in complement to Saccharomyces cerevisiae.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Ribonuclease III/metabolismo , Tombusvirus/isolamento & purificação , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica de Plantas , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Cadeia Dupla , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Saccharomyces cerevisiae/genética , Nicotiana/virologia , Replicação Viral
19.
Med Sci (Paris) ; 25(5): 505-11, 2009 May.
Artigo em Francês | MEDLINE | ID: mdl-19480832

RESUMO

RNA silencing is a conserved eukaryotic process mediated by small RNA molecules that inhibit gene expression at the transcriptional, mRNA-stability or translational level through sequence-specific interactions. Diverse roles have been identified for RNA silencing such as genome defense against mobile DNA elements or down-regulation of specific factors during plant and animal development. In plants, RNA silencing plays a crucial role in antiviral defense by inhibiting viral accumulation and sometimes preventing systemic infection. As a counter-defense mechanism, viruses have evolved anti-silencing strategies through the production of viral suppressors of RNA silencing. Here we review the mechanism of RNA silencing and its inhibition during plant/virus interactions and suggest the possible consequences of this molecular arms race on the evolution of both viral and host genomes.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Plantas/genética , Interferência de RNA , RNA de Plantas/genética , Proteínas de Arabidopsis/fisiologia , Proteínas de Ciclo Celular/fisiologia , Previsões , MicroRNAs/genética , Modelos Biológicos , Doenças das Plantas/genética , Plantas/virologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ribonuclease III/fisiologia , Proteínas Virais/fisiologia
20.
Front Plant Sci ; 9: 135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479364

RESUMO

Peroxisomes are organelles that play key roles in eukaryotic metabolism. Their protein complement is entirely imported from the cytoplasm thanks to a unique pathway that is able to translocate folded proteins and protein complexes across the peroxisomal membrane. The import of molecules bound to a protein targeted to peroxisomes is an active process known as 'piggybacking' and we have recently shown that P15, a virus-encoded protein possessing a peroxisomal targeting sequence, is able to piggyback siRNAs into peroxisomes. Here, we extend this observation by analyzing the small RNA repertoire found in peroxisomes of P15-expressing plants. A direct comparison with the P15-associated small RNA retrieved during immunoprecipitation (IP) experiments, revealed that in vivo piggybacking coupled to peroxisome isolation could be a more sensitive means to determine the various small RNA species bound by a given protein. This increased sensitivity of peroxisome isolation as opposed to IP experiments was also striking when we analyzed the small RNA population bound by the Tomato bushy stunt virus-encoded P19, one of the best characterized viral suppressors of RNA silencing (VSR), artificially targeted to peroxisomes. These results support that peroxisomal targeting should be considered as a novel/alternative experimental approach to assess in vivo interactions that allows detection of labile binding events. The advantages and limitations of this approach are discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa