Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 7, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349549

RESUMO

Traditional maize grain is deficient in methionine, an essential amino acid required for proper growth and development in humans and poultry birds. Thus, development of high methionine maize (HMM) assumes great significance in alleviating malnutrition through sustainable and cost-effective approach. Of various genetic loci, aspartate kinase2 (ask2) gene plays a pivotal role in regulating methionine accumulation in maize. Here, we sequenced the entire ask2 gene of 5394 bp with 13 exons in five wild and five mutant maize inbreds to understand variation at nucleotide level. Sequence analysis revealed that an SNP in exon-13 caused thymine to adenine transversion giving rise to a favourable mutant allele associated with leucine to glutamine substitution in mutant ASK2 protein. Gene-based diversity analysis with 11 InDel markers grouped 48 diverse inbreds into three major clusters with an average genetic dissimilarity of 0.570 (range, 0.0-0.9). The average major allele frequency, gene diversity and PIC are 0.693, 0.408 and 0.341, respectively. A total of 45 haplotypes of the ask2 gene were identified among the maize inbreds. Evolutionary relationship analysis performed among 22 orthologues grouped them into five major clusters. The number of exons varied from 7 to 17, with length varying from 12 to 495 bp among orthologues. ASK2 protein with 565 amino acids was predicted to be in homo-dimeric state with lysine and tartaric acid as binding ligands. Amino acid kinase and ACT domains were found to be conserved in maize and orthologues. The study depicted the presence of enough genetic diversity in ask2 gene in maize, and development of HMM can be accelerated through introgression of favourable allele of ask2 into the parental lines of elite hybrids using molecular breeding.


Assuntos
Ácido Aspártico , Zea mays , Aminoácidos , Haplótipos , Metionina/genética , Racemetionina , Zea mays/genética
2.
Gene ; 895: 148001, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977314

RESUMO

Demand for maize oil is progressively increasing due to its diverse industrial applications, aside from its primary role in human nutrition and animal feed. Oil content and composition are two crucial determinants of maize oil in the international market. As kernel oil in maize is a complex quantitative trait, improving this trait presents a challenge for plant breeders and biotechnologists. Here, we characterized a set of 292 diverse maize inbreds of both indigenous and exotic origin by exploiting functional polymorphism of the dgat1-2, fatb, ge2, and wri1a genes governing kernel oil in maize. Genotyping using gene-based functional markers revealed a lower frequencies of dgat1-2 (0.15) and fatb (0.12) mutant alleles and a higher frequencies of wild-type alleles (Dgat1-2: 0.85; fatB: 0.88). The favorable wri1a allele was conserved across genotypes, while its wild-type allele (WRI1a) was not detected. In contrast, none of the genotypes possessed the ge2 favorable allele. The frequency of favorable alleles of both dgat1-2 and fatb decreased to 0.03 when considered together. Furthermore, pairwise protein-protein interactions among target gene products were conducted to understand the effect of one protein on another and their responses to kernel oil through functional enrichments. Thus, the identified maize genotypes with dgat1-2, fatb, and wri1a favourable alleles, along with insights gained through the protein-protein association network, serve as prominent and unique genetic resources for high-oil maize breeding programs. This is the first comprehensive report on the functional characterization of diverse genotypes at the molecular and protein levels.


Assuntos
Óleo de Milho , Zea mays , Humanos , Zea mays/genética , Zea mays/metabolismo , Óleo de Milho/genética , Óleo de Milho/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Melhoramento Vegetal , Marcadores Genéticos , Alelos
3.
PLoS One ; 16(2): e0245497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539427

RESUMO

Malnutrition has emerged as one of the major health problems worldwide. Traditional yellow maize has low provitamin-A (proA) content and its genetic base in proA biofortification breeding program of subtropics is extremely narrow. To diversify the proA rich germplasm, 10 elite low proA inbreds were crossed with a proA rich donor (HP702-22) having mutant crtRB1 gene. The F2 populations derived from these crosses were genotyped using InDel marker specific to crtRB1. Severe marker segregation distortion was observed. Seventeen crtRB1 inbreds developed through marker-assisted pedigree breeding and seven inbreds generated using marker-assisted backcross breeding were characterized using 77 SSRs. Wide variation in gene diversity (0.08 to 0.79) and dissimilarity coefficient (0.28 to 0.84) was observed. The inbreds were grouped into three major clusters depicting the existing genetic diversity. The crtRB1-based inbreds possessed high ß-carotene (BC: 8.72µg/g), ß-cryptoxanthin (BCX: 4.58µg/g) and proA (11.01µg/g), while it was 2.35µg/g, 1.24µg/g and 2.97µg/g in checks, respectively. Based on their genetic relationships, 15 newly developed crtRB1-based inbreds were crossed with five testers (having crtRB1 gene) using line × tester mating design. 75 experimental hybrids with crtRB1 gene were evaluated over three locations. These experimental hybrids possessed higher BC (8.02µg/g), BCX (4.69µg/g), proA (10.37µg/g) compared to traditional hybrids used as check (BC: 2.36 µg/g, BCX: 1.53µg/g, proA: 3.13µg/g). Environment and genotypes × environment interaction had minor effects on proA content. Both additive and dominance gene action were significant for proA. The mean proportion of proA to total carotenoids (TC) was 44% among crtRB1-based hybrids, while 11% in traditional hybrids. BC was found to be positively correlated with BCX (r = 0.68) and proA (r = 0.98). However, no correlation was observed between proA and grain yield. Several hybrids with >10.0 t/ha grain yield with proA content >10.0 µg/g were identified. This is the first comprehensive study on development of diverse proA rich maize hybrids through marker-assisted pedigree breeding approach. The findings provides sustainable and cost-effective solution to alleviate vitamin-A deficiency.


Assuntos
Grão Comestível/química , Grão Comestível/genética , Endogamia/métodos , Melhoramento Vegetal/métodos , Provitaminas/análise , Vitamina A/análise , Zea mays/química , Zea mays/genética , Alelos , Carotenoides/análise , Genes de Plantas , Genótipo , Desnutrição/dietoterapia , Proteínas de Plantas/genética , Polimorfismo Genético , Deficiência de Vitamina A/dietoterapia , beta Caroteno/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa