Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Appl Physiol ; 114(2): 405-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24327174

RESUMO

PURPOSE: We explored whether altered expression of factors tuning mitochondrial metabolism contributes to muscular adaptations with endurance training in the condition of lowered ambient oxygen concentration (hypoxia) and whether these adaptations relate to oxygen transfer as reflected by subsarcolemmal mitochondria and oxygen metabolism in muscle. METHODS: Male volunteers completed 30 bicycle exercise sessions in normoxia or normobaric hypoxia (4,000 m above sea level) at 65% of the respective peak aerobic power output. Myoglobin content, basal oxygen consumption, and re-oxygenation rates upon reperfusion after 8 min of arterial occlusion were measured in vastus muscles by magnetic resonance spectroscopy. Biopsies from vastus lateralis muscle, collected pre and post a single exercise bout, and training, were assessed for levels of transcripts and proteins being associated with mitochondrial metabolism. RESULTS: Hypoxia specifically lowered the training-induced expression of markers of respiratory complex II and IV (i.e. SDHA and isoform 1 of COX-4; COX4I1) and preserved fibre cross-sectional area. Concomitantly, trends (p < 0.10) were found for a hypoxia-specific reduction in the basal oxygen consumption rate, and improvements in oxygen repletion, and aerobic performance in hypoxia. Repeated exercise in hypoxia promoted the biogenesis of subsarcolemmal mitochondria and this was co-related to expression of isoform 2 of COX-4 with higher oxygen affinity after single exercise, de-oxygenation time and myoglobin content (r ≥ 0.75). Conversely, expression in COX4I1 with training correlated negatively with changes of subsarcolemmal mitochondria (r < -0.82). CONCLUSION: Hypoxia-modulated adjustments of aerobic performance with repeated muscle work are reflected by expressional adaptations within the respiratory chain and modified muscle oxygen metabolism.


Assuntos
Respiração Celular , Exercício Físico , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Adulto , Altitude , Estudos de Casos e Controles , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Mioglobina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reperfusão
2.
Am J Physiol Cell Physiol ; 299(2): C307-15, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20505039

RESUMO

Although several lines of evidence link muscle-derived oxidants and inflammation to skeletal muscle wasting via regulation of apoptosis and proteolysis, little information is currently available on muscle repair. The present work was designed to study oxidative stress response, inflammatory cytokines, apoptotic, or proteolytic pathways during the early (1 and 5 days) and later (14 days) stages of the regrowth process subsequent to 14 days of hindlimb unloading. During the early stages of reloading, muscle mass recovery (day 5) was facilitated by transcriptional downregulation (day 1) of pathways involved in muscle proteolysis [mu-calpain, atrogin-1/muscle atrophy F-box (MAFbx), and muscle RING finger-1/(MuRF1) mRNA] and upregulation of an autophagy-related protein Beclin-1 (day 5). At the same time, oxidative stress (glutathione vs. glutathione disulfide ratio, superoxide dismutase, catalase activities) remained still enhanced, whereas the increased uncoupling protein 3 gene expression recovered. Increased caspase-9 (mitochondrial-driven apoptosis) and decreased caspase-12 (sarcoplasmic reticulum-mediated apoptosis) activation was also normalized at early stages (day 5). Conversely, the receptor-mediated apoptotic pathway initiated by ligand-induced (tumor necrosis factor-alpha, TNF-alpha) binding and promoting the activation of caspase-8 remained elevated until 14 days. Our data suggest that at early stages, muscle repair is mediated via the modulation of mitochondrial-driven apoptosis and muscle proteolysis. Despite full muscle mass recovery, oxidative stress and TNF-alpha-mediated apoptotic pathway are still activated till later stages of muscle remodeling.


Assuntos
Apoptose/fisiologia , Elevação dos Membros Posteriores , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Estresse Oxidativo/fisiologia , Proteínas/metabolismo , Proteínas/fisiologia , Animais , Feminino , Elevação dos Membros Posteriores/efeitos adversos , Elevação dos Membros Posteriores/métodos , Elevação dos Membros Posteriores/fisiologia , Hidrólise , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Ratos , Ratos Wistar
3.
Pflugers Arch ; 459(4): 631-44, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19997852

RESUMO

Calcium-dependent signalling pathways are believed to play an important role in skeletal muscle atrophy, but whether intracellular Ca(2+) homeostasis is affected in that situation remains obscure. We show here that there is a 20% atrophy of the fast-type flexor digitorum brevis (FDB) muscle in rats hind limb unloaded (HU) for 2 weeks, with no change in fibre type distribution. In voltage-clamp experiments, the amplitude of the slow Ca(2+) current was found similar in fibres from control and HU animals. In fibres loaded with the Ca(2+) dye indo-1, the value for the rate of [Ca(2+)] decay after the end of 5-100-ms-long voltage-clamp depolarisations from -80 to +10 mV was found to be 30-50% lower in fibres from HU animals. This effect was consistent with a reduced contribution of both saturable and non-saturable components of myoplasmic Ca(2+) removal. However, there was no change in the relative amount of parvalbumin, and type 1 sarco-endoplasmic reticulum Ca(2+)-ATPase was increased by a factor of three in the atrophied muscles. Confocal imaging of mitochondrial membrane potential showed that atrophied FDB fibres had significantly depolarized mitochondria as compared to control fibres. Depolarization of mitochondria in control fibres with carbonyl cyanide-p-trifluoromethoxyphenylhydrazone induced a slowing of the decay of [Ca(2+)] transients accompanied by an increase in resting [Ca(2+)] and a reduction of the peak amplitude of the transients. Overall results provide the first functional evidence for severely altered intracellular Ca(2+) removal capabilities in atrophied fast-type muscle fibres and highlight the possible contribution of reduced mitochondrial polarisation.


Assuntos
Cálcio/metabolismo , Fibras Musculares de Contração Rápida , Transtornos Musculares Atróficos/metabolismo , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Feminino , Corantes Fluorescentes/metabolismo , Elevação dos Membros Posteriores , Indóis/metabolismo , Ionóforos/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Transtornos Musculares Atróficos/patologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
4.
J Appl Physiol (1985) ; 119(4): 342-51, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26112243

RESUMO

Skeletal muscle atrophy is commonly associated with immobilization, ageing, and catabolic diseases such as diabetes and cancer cachexia. Epigenetic regulation of gene expression resulting from chromatin remodeling through histone acetylation has been implicated in muscle disuse. The present work was designed to test the hypothesis that treatment with trichostatin A (TSA), a histone deacetylase inhibitor, would partly counteract unloading-induced muscle atrophy. Soleus muscle atrophy (-38%) induced by 14 days of rat hindlimb suspension was reduced to only 25% under TSA treatment. TSA partly prevented the loss of type I and IIa fiber size and reversed the transitions of slow-twitch to fast-twitch fibers in soleus muscle. Unloading or TSA treatment did not affect myostatin gene expression and follistatin protein. Soleus protein carbonyl content remained unchanged, whereas the decrease in glutathione vs. glutathione disulfide ratio and the increase in catalase activity (biomarkers of oxidative stress) observed after unloading were abolished by TSA treatment. The autophagy-lysosome pathway (Bnip3 and microtubule-associated protein 1 light chain 3 proteins, Atg5, Gabarapl1, Ulk1, and cathepsin B and L mRNA) was not activated by unloading or TSA treatment. However, TSA suppressed the rise in muscle-specific RING finger protein 1 (MuRF1) caused by unloading without affecting the forkhead box (Foxo3) transcription factor. Prevention of muscle atrophy by TSA might be due to the regulation of the skeletal muscle atrophy-related MuRF1 gene. Our findings suggest that TSA may provide a novel avenue to treat unloaded-induced muscle atrophy.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Elevação dos Membros Posteriores , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/enzimologia , Fibras Musculares de Contração Lenta/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Atrofia Muscular/enzimologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Fenótipo , RNA Mensageiro/metabolismo , Ratos Wistar , Fatores de Tempo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
5.
Am J Physiol Endocrinol Metab ; 282(2): E355-65, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11788367

RESUMO

ACTH has been shown to depolarize bovine adrenal zona fasciculata cells by inhibiting a K(+) current. The effects of this hormone on such cells have been reexamined using perforated and standard patch recording methods. In current clamp experiments, ACTH (10 nM) induced a membrane depolarization to -36 +/- 1 mV (n = 56), which was mimicked by forskolin (10 microM) or by 8-(4-chlorophenylthio)-cAMP (8 mM). ACTH-induced membrane depolarizations were associated in the majority of cells with an increase in membrane conductance. In the other cells, these membrane responses could occur without change or could be correlated with a transient or with a continuous Cs(+)-sensitive decrease in membrane conductance. The depolarizations associated with an increase in membrane conductance were depressed by Cl(-) current inhibitors diphenylamine-2-carboxylic acid (DPC; 1 mM), anthracene-9-carboxylic acid (9-AC; 1 mM), DIDS (400 microM), verapamil (100 microM), and glibenclamide (20 microM). In voltage-clamped Cs(+)-loaded cells, ACTH activated a time-independent current that displayed an outward rectification and reversed at -21.5 mV +/- 2 (n = 6). This current, observed in the presence of internal EGTA (5 mM), was depressed in low Cl(-) external solution and was inhibited by DPC, 9-AC, DIDS, 5-nitro-2-(3-phenylpropylamino)benzoic acid, verapamil, and glibenclamide. ACTH-stimulated cortisol secretion was blocked by Cl(-) channel inhibitors DIDS (400 microM) and DPC (1 mM). The present results reveal that, in addition to inhibiting a K(+) current, ACTH activates in bovine zona fasciculata cells a Ca(2+)-insensitive, cAMP-dependent Cl(-) current. This Cl(-) current is involved in the ACTH-induced membrane depolarization, which seems to be a crucial step in stimulating steroidogenesis.


Assuntos
Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Canais de Cloreto/fisiologia , AMP Cíclico/análogos & derivados , Hidrocortisona/metabolismo , Córtex Suprarrenal/citologia , Animais , Cálcio/fisiologia , Bovinos , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/farmacologia , Condutividade Elétrica , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Tionucleotídeos/farmacologia , Zona Fasciculada/citologia , Zona Fasciculada/efeitos dos fármacos , Zona Fasciculada/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa