Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 613(7945): 751-758, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631608

RESUMO

Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.


Assuntos
Anticódon , Códon de Terminação , Células Eucarióticas , Código Genético , Mutação , Fatores de Terminação de Peptídeos , RNA de Transferência , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Cilióforos/genética , Códon de Terminação/genética , Código Genético/genética , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Triptofano/genética , Saccharomyces cerevisiae/genética , RNA de Transferência de Ácido Glutâmico/genética , Trypanosoma brucei brucei/genética
2.
PLoS Biol ; 22(8): e3002449, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39146359

RESUMO

Protein import and genome replication are essential processes for mitochondrial biogenesis and propagation. The J-domain proteins Pam16 and Pam18 regulate the presequence translocase of the mitochondrial inner membrane. In the protozoan Trypanosoma brucei, their counterparts are TbPam16 and TbPam18, which are essential for the procyclic form (PCF) of the parasite, though not involved in mitochondrial protein import. Here, we show that during evolution, the 2 proteins have been repurposed to regulate the replication of maxicircles within the intricate kDNA network, the most complex mitochondrial genome known. TbPam18 and TbPam16 have inactive J-domains suggesting a function independent of heat shock proteins. However, their single transmembrane domain is essential for function. Pulldown of TbPam16 identifies a putative client protein, termed MaRF11, the depletion of which causes the selective loss of maxicircles, akin to the effects observed for TbPam18 and TbPam16. Moreover, depletion of the mitochondrial proteasome results in increased levels of MaRF11. Thus, we have discovered a protein complex comprising TbPam18, TbPam16, and MaRF11, that controls maxicircle replication. We propose a working model in which the matrix protein MaRF11 functions downstream of the 2 integral inner membrane proteins TbPam18 and TbPam16. Moreover, we suggest that the levels of MaRF11 are controlled by the mitochondrial proteasome.


Assuntos
Replicação do DNA , DNA Mitocondrial , Proteínas de Protozoários , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Evolução Molecular
5.
Curr Biol ; 34(20): 4803-4812.e3, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39321796

RESUMO

The acquisition of mitochondria was imperative for initiating eukaryogenesis and thus is a characteristic feature of eukaryotic cells.1,2 The parasitic protist Trypanosoma brucei contains a singular mitochondrion with a unique mitochondrial genome, termed the kinetoplast DNA (kDNA).3 Replication of the kDNA occurs during the G1 phase of the cell cycle, prior to the start of nuclear DNA replication.4 Although numerous proteins have been functionally characterized and identified as vital components of kDNA replication and division, the molecular mechanisms governing this highly precise process remain largely unknown.5,6 One division-related and morphologically characteristic structure that remains most enigmatic is the "nabelschnur," an undefined, filament-resembling structure observed by electron microscopy between segregating daughter kDNA networks.7,8,9 To date, only one protein, TbLAP1, an M17 family leucyl aminopeptidase metalloprotease, is known to localize to the nabelschnur.9 While screening proteins from the T. brucei MitoTag project,10 we identified a previously uncharacterized protein with an mNeonGreen signal localizing to the kDNA as well as forming a point of connection between dividing kDNAs. Here, we demonstrate that this kDNA-associated protein, named TbNAB70, indeed localizes to the nabelschnur and plays an essential role in the segregation of newly replicated kDNAs and subsequent cytokinesis in T. brucei.


Assuntos
DNA de Cinetoplasto , Proteínas de Protozoários , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , DNA de Cinetoplasto/metabolismo , DNA de Cinetoplasto/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Replicação do DNA
6.
Methods Mol Biol ; 1955: 119-134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30868523

RESUMO

The surface coat of Trypanosoma cruzi is covered with glycosylphosphatidylinositol (GPI)-anchored glycoproteins (GAGPs) that contribute to parasite protection and to the establishment of a persistent infection in both the insect vector and the mammalian host. Multiple GAGPs that vary by amino acid sequence and/or posttranslational modifications are co-expressed on the parasite surface coat, hence curtailing structural/functional analyses on these molecules. Studies in our lab have indicated that GAGP-tagged variants expressed by transfected parasites undergo analogous posttranslational processing than endogenous ones and therefore constitute suitable tools to overcome these limitations. In this chapter, we detail the entire methodological pipeline for the efficient homologous expression of GAGPs in T. cruzi: from a simple strategy for the simultaneously cloning and tagging of the gene of interest to the biochemical validation of the parasite-expressed product.


Assuntos
Proteínas Ligadas por GPI/genética , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Doença de Chagas/parasitologia , Clonagem Molecular/métodos , Expressão Gênica , Humanos , Proteínas Recombinantes/genética , Transfecção/métodos
7.
Mol Biochem Parasitol ; 211: 67-70, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27984073

RESUMO

Mechanistic details of the modulation by cAMP of Trypanosoma cruzi host cell invasion remain ill-defined. Here we report that activation of host's Epac1 stimulated invasion, whereas specific pharmacological inhibition or maneuvers that alter Epac1 subcellular localization significantly reduced invasion. Furthermore, while specific activation of host cell PKA showed no effect, its inhibition resulted in an increased invasion, revealing a crosstalk between the PKA and Epac signaling pathways during the process of invasion. Therefore, our data suggests that subcellular localization of Epac might be playing an important role during invasion and that specific activation of the host cell cAMP/Epac1 pathway is required for cAMP-mediated invasion.


Assuntos
AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interações Hospedeiro-Parasita , Trypanosoma cruzi/fisiologia , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transporte Proteico , Ratos , Transdução de Sinais , Trypanosoma cruzi/patogenicidade
8.
PLoS Negl Trop Dis ; 11(9): e0005986, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28961244

RESUMO

BACKGROUND: The Trypanosoma cruzi genome bears a huge family of genes and pseudogenes coding for Mucin-Associated Surface Proteins (MASPs). MASP molecules display a 'mosaic' structure, with highly conserved flanking regions and a strikingly variable central and mature domain made up of different combinations of a large repertoire of short sequence motifs. MASP molecules are highly expressed in mammal-dwelling stages of T. cruzi and may be involved in parasite-host interactions and/or in diverting the immune response. METHODS/PRINCIPLE FINDINGS: High-density microarrays composed of fully overlapped 15mer peptides spanning the entire sequences of 232 non-redundant MASPs (~25% of the total MASP content) were screened with chronic Chagasic sera. This strategy led to the identification of 86 antigenic motifs, each one likely representing a single linear B-cell epitope, which were mapped to 69 different MASPs. These motifs could be further grouped into 31 clusters of structurally- and likely antigenically-related sequences, and fully characterized. In contrast to previous reports, we show that MASP antigenic motifs are restricted to the central and mature region of MASP polypeptides, consistent with their intracellular processing. The antigenicity of these motifs displayed significant positive correlation with their genome dosage and their relative position within the MASP polypeptide. In addition, we verified the biased genetic co-occurrence of certain antigenic motifs within MASP polypeptides, compatible with proposed intra-family recombination events underlying the evolution of their coding genes. Sequences spanning 7 MASP antigenic motifs were further evaluated using distinct synthesis/display approaches and a large panel of serum samples. Overall, the serological recognition of MASP antigenic motifs exhibited a remarkable non normal distribution among the T. cruzi seropositive population, thus reducing their applicability in conventional serodiagnosis. As previously observed in in vitro and animal infection models, immune signatures supported the concurrent expression of several MASPs during human infection. CONCLUSIONS/SIGNIFICANCE: In spite of their conspicuous expression and potential roles in parasite biology, this study constitutes the first unbiased, high-resolution profiling of linear B-cell epitopes from T. cruzi MASPs during human infection.


Assuntos
Antígenos de Protozoários , Doença de Chagas/parasitologia , Epitopos de Linfócito B/química , Genoma de Protozoário , Proteínas de Membrana/imunologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Motivos de Aminoácidos , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Humanos , Soros Imunes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mucinas/química , Análise Serial de Proteínas , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/química
9.
PLoS One ; 10(6): e0130099, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086767

RESUMO

The flagellar pocket constitutes an active and strategic site in the body of trypanosomatids (i.e. parasitic protozoa that cause important human and/or livestock diseases), which participates in several important processes such as cell polarity, morphogenesis and replication. Most importantly, the flagellar pocket is the unique site of surface protein export and nutrient uptake in trypanosomatids, and thus constitutes a key portal for the interaction with the host. In this work, we identified and characterized a novel Trypanosoma cruzi protein, termed TCLP 1, that accumulates at the flagellar pocket area of parasite replicative forms, as revealed by biochemical, immuno-cytochemistry and electron microscopy techniques. Different in silico analyses revealed that TCLP 1 is the founding member of a family of chimeric molecules restricted to trypanosomatids bearing, in addition to eukaryotic ubiquitin-like and protein-protein interacting domains, a motif displaying significant structural homology to bacterial multi-cargo chaperones involved in the secretion of virulence factors. Using the fidelity of an homologous expression system we confirmed TCLP 1 sub-cellular distribution and showed that TCLP 1-over-expressing parasites display impaired survival and accelerated progression to late stationary phase under starvation conditions. The reduced endocytic capacity of TCLP 1-over-expressors likely underlies (at least in part) this growth phenotype. TCLP 1 is involved in the uptake of extracellular macromolecules required for nutrition and hence in T. cruzi growth. Due to the bacterial origin, sub-cellular distribution and putative function(s), we propose TCLP 1 and related orthologs in trypanosomatids as appealing therapeutic targets for intervention against these health-threatening parasites.


Assuntos
Doença de Chagas/parasitologia , Flagelos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Sequência de Aminoácidos , Endocitose , Flagelos/química , Flagelos/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Alinhamento de Sequência , Trypanosoma cruzi/química , Trypanosoma cruzi/citologia , Trypanosoma cruzi/genética , Regulação para Cima
10.
PLoS Negl Trop Dis ; 7(11): e2552, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24244781

RESUMO

BACKGROUND: TcSMUG L products were recently identified as novel mucin-type glycoconjugates restricted to the surface of insect-dwelling epimastigote forms of Trypanosoma cruzi, the etiological agent of Chagas disease. The remarkable conservation of their predicted mature N-terminal region, which is exposed to the extracellular milieu, suggests that TcSMUG L products may be involved in structural and/or functional aspects of the interaction with the insect vector. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we investigated the putative roles of TcSMUG L mucins in both in vivo development and ex vivo attachment of epimastigotes to the luminal surface of the digestive tract of Rhodnius prolixus. Our results indicate that the exogenous addition of TcSMUG L N-terminal peptide, but not control T. cruzi mucin peptides, to the infected bloodmeal inhibited the development of parasites in R. prolixus in a dose-dependent manner. Pre-incubation of insect midguts with the TcSMUG L peptide impaired the ex vivo attachment of epimastigotes to the luminal surface epithelium, likely by competing out TcSMUG L binding sites on the luminal surface of the posterior midgut, as revealed by fluorescence microscopy. CONCLUSION AND SIGNIFICANCE: Together, these observations indicate that TcSMUG L mucins are a determinant of both adhesion of T. cruzi epimastigotes to the posterior midgut epithelial cells of the triatomine, and the infection of the insect vector, R. prolixus.


Assuntos
Mucinas/metabolismo , Rhodnius/parasitologia , Trypanosoma cruzi/metabolismo , Animais , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Insetos Vetores/parasitologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa