Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32948523

RESUMO

In recent years, various studies have demonstrated that the gut microbiota influences host metabolism. However, these studies were focused primarily on a single or a limited range of host species, thus preventing a full exploration of possible taxonomic and functional adaptations by gut microbiota members as a result of host-microbe coevolution events. In the current study, the microbial taxonomic profiles of 250 fecal samples, corresponding to 77 host species that cover the mammalian branch of the tree of life, were reconstructed by 16S rRNA gene-based sequence analysis. Moreover, shotgun metagenomics was employed to investigate the metabolic potential of the fecal microbiomes of 24 mammals, and subsequent statistical analyses were performed to assess the impact of host diet and corresponding physiology of the digestive system on gut microbiota composition and functionality. Functional data were confirmed and extended through metatranscriptome assessment of gut microbial populations of eight animals, thus providing insights into the transcriptional response of gut microbiota to specific dietary lifestyles. Therefore, the analyses performed in this study support the notion that the metabolic features of the mammalian gut microbiota have adapted to maximize energy extraction from the host's diet.IMPORTANCE Diet and host physiology have been recognized as main factors affecting both taxonomic composition and functional features of the mammalian gut microbiota. However, very few studies have investigated the bacterial biodiversity of mammals by using large sample numbers that correspond to multiple mammalian species, thus resulting in an incomplete understanding of the functional aspects of their microbiome. Therefore, we investigated the bacterial taxonomic composition of 250 fecal samples belonging to 77 host species distributed along the tree of life in order to assess how diet and host physiology impact the intestinal microbial community by selecting specific microbial players. Conversely, the application of shotgun metagenomics and metatranscriptomics approaches to a group of selected fecal samples allowed us to shed light on both metabolic features and transcriptional responses of the intestinal bacterial community based on different diets.


Assuntos
Bactérias/isolamento & purificação , Dieta/veterinária , Fezes/microbiologia , Microbioma Gastrointestinal , Mamíferos/microbiologia , Mamíferos/fisiologia , Animais , Bactérias/classificação , Perfilação da Expressão Gênica/veterinária , Metagenômica , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Especificidade da Espécie
2.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32303552

RESUMO

Among the bacterial genera that are used for cheese production, Lactobacillus is a key taxon of high industrial relevance that is commonly present in commercial starter cultures for dairy fermentations. Certain lactobacilli play a defining role in the development of the organoleptic features during the ripening stages of particular cheeses. We performed an in-depth 16S rRNA gene-based microbiota analysis coupled with internally transcribed spacer-mediated Lactobacillus compositional profiling of 21 common Italian cheeses produced from raw milk in order to evaluate the ecological distribution of lactobacilli associated with this food matrix. Statistical analysis of the collected data revealed the existence of putative Lactobacillus community state types (LCSTs), which consist of clusters of Lactobacillus (sub)species. Each LCST is dominated by one or two taxa that appear to represent keystone elements of an elaborate network of positive and negative interactions with minor components of the cheese microbiota. The results obtained in this study reveal the existence of peculiar cheese microbiota assemblies that represent intriguing targets for further functional studies aimed at dissecting the species-specific role of bacteria in cheese manufacturing.IMPORTANCE The microbiota is known to play a key role in the development of the organoleptic features of dairy products. Lactobacilli have been reported to represent one of the main components of the nonstarter bacterial population, i.e., bacteria that are not deliberately added to the milk, harbored by cheese, although the species-level composition of this microbial population has never been assessed in detail. In the present study, we applied a recently developed metagenomic approach that employs an internally transcribed spacer to profile the Lactobacillus population harbored by cheese produced from raw milk at the (sub)species level. The obtained data revealed the existence of particular Lactobacillus community state types consisting of clusters of Lactobacillus (sub)species that tend to cooccur in the screened cheeses. Moreover, analysis of covariances between members of this genus indicate that these taxa form an elaborate network of positive and negative interactions that define specific clusters of covariant lactobacilli.


Assuntos
Queijo/microbiologia , Lactobacillus/fisiologia , Leite/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Itália , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Microbiota , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
3.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32005736

RESUMO

During the course of evolution, dogs and cats have been subjected to extensive domestication, becoming the principal companion animals for humans. For this reason, their health care, including their intestinal microbiota, is considered of considerable importance. However, the canine and feline gut microbiota still represent a largely unexplored research area. In the present work, we profiled the microbiota of 23 feline fecal samples by 16S rRNA gene and bifidobacterial internally transcribed spacer (ITS) approaches and compared this information with previously reported data from 138 canine fecal samples. The obtained data allowed the reconstruction of the core gut microbiota of the above-mentioned samples coupled with their classification into distinct community state types at both genus and species levels, identifying Bacteroides, Fusobacterium, and Prevotella 9 as the main bacterial components of the canine and feline gut microbiota. At the species level, the intestinal bifidobacterial gut communities of dogs and cats differed in terms of both species number and composition, as emphasized by a covariance analysis. Together, our findings show that the intestinal populations of cats and dogs are similar in terms of genus-level taxonomical composition, while at the bifidobacterial species level, clear differences were observed, indicative of host-specific colonization behavior by particular bifidobacterial taxa.IMPORTANCE Currently, domesticated dogs and cats are the most cherished companion animals for humans, and concerns about their health and well-being are therefore important. In this context, the gut microbiota plays a crucial role in maintaining and promoting host health. However, despite the social relevance of domesticated dogs and cats, their intestinal microbial communities are still far from being completely understood. In this study, the taxonomical composition of canine and feline gut microbiota was explored at genus and bifidobacterial species levels, allowing classification of these microbial populations into distinct gut community state types at either of the two investigated taxonomic levels. Furthermore, the reconstruction of core gut microbiota coupled with covariance network analysis based on bifidobacterial internally transcribed spacer (ITS) profiling revealed differences in the bifidobacterial compositions of canine and feline gut microbiota, suggesting that particular bifidobacterial species have developed a selective ability to colonize a specific host.


Assuntos
Bifidobacterium/isolamento & purificação , Gatos/microbiologia , Cães/microbiologia , Microbioma Gastrointestinal , Animais , DNA Espaçador Ribossômico/análise , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
4.
Int J Syst Evol Microbiol ; 70(4): 2288-2297, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32065574

RESUMO

Two Bifidobacterium strains, i.e., 2176BT and 2177BT, were isolated from Golden-Headed Lion Tamarin (Leontopithecus chrysomelas) and Goeldi's monkey (Callimico goeldii). Isolates were shown to be Gram-positive, non-motile, non-sporulating, facultative anaerobic and d-fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA sequences, multilocus sequences (including hsp60, rpoB, dnaJ, dnaG and clpC genes) and the core genome revealed that bifidobacterial strains 2176BT and 2177BT exhibit close phylogenetic relatedness to Bifidobacterium felsineum DSM 103139T and Bifidobacterium bifidum LMG 11041T, respectively. Further genotyping based on the genome sequence of the isolated strains combined with phenotypic analyses, clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, Bifidobacterium cebidarum sp. nov. (2176BT=LMG 31469T=CCUG 73785T) and Bifidobacterium leontopitheci sp. nov. (2177BT=LMG 31471T=CCUG 73786T are proposed as novel Bifidobacterium species.


Assuntos
Bifidobacterium/classificação , Callimico/microbiologia , Leontopithecus/microbiologia , Filogenia , Aldeído Liases , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Sequência de Bases , Bifidobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes/microbiologia , Genes Bacterianos , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Environ Microbiol ; 21(4): 1331-1343, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30680877

RESUMO

Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi-omics approach was applied to six wild wolves and 169 dog faecal samples, the latter encompassing 51 breeds, which fully covers currently known canine genetic biodiversity. Specifically, 16S rRNA gene and bifidobacterial Internally Transcribed Spacer (ITS) profiling were employed to reconstruct and then compare the canine core gut microbiota to those of wolves and humans, revealing that artificial selection and subsequent cohabitation of dogs with their owners influenced the microbial population of canine gut through loss and acquisition of specific bacterial taxa. Moreover, comparative analysis of the intestinal bacterial population of dogs fed on Bones and Raw Food (BARF) or commercial food (CF) diet, coupled with shotgun metagenomics, highlighted that both bacterial composition and metabolic repertoire of the canine gut microbiota have evolved to adapt to high-protein or high-carbohydrates intake. Altogether, these data indicate that artificial selection and domestication not only affected the canine genome, but also shaped extensively the bacterial population harboured by the canine gut.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Cães/microbiologia , Microbioma Gastrointestinal/genética , Metagenoma/genética , Fenômenos Fisiológicos da Nutrição , Animais , Bifidobacterium/genética , Fezes/microbiologia , Metagenômica , RNA Ribossômico 16S/genética , Lobos/microbiologia
6.
Environ Microbiol ; 21(10): 3683-3695, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31172651

RESUMO

Bifidobacterium bifidum is reported to be among the first colonizers of the newborn's gastrointestinal tract due to its ability to metabolize human milk oligosaccharides (HMOs). In order to investigate biological features that allow this bifidobacterial species to colonize a newborn, bifidobacterial internally transcribed spacer profiling of stool samples of 50 mother-infant dyads, as well as corresponding breastmilk samples, was performed. Hierarchical clustering based on bifidobacterial population profiles found in infant faecal samples revealed the presence of four bifidobacterial clusters or the so-called bifidotypes. Bifidobacterium bifidum was shown to be a key member among bifidotypes, in which its presence correlate with several different bifidobacterial species retrieved in infant faecal samples. For this reason, we investigated cross-feeding behaviour facilitated by B. bifidum on a bioreactor model using human milk as growth substrate. Transcriptional profiles of this strain were evaluated when grown on nine specific glycans typically constituting HMOs. Remarkably, these analyses suggest extensive co-evolution with the host and other bifidobacterial species in terms of resource provision and sharing, respectively, activities that appear to support a bifidobacteria-dominant microbiome.


Assuntos
Bifidobacterium bifidum/fisiologia , Coevolução Biológica , Microbioma Gastrointestinal , Adolescente , Adulto , Reatores Biológicos , Fezes/microbiologia , Feminino , Humanos , Recém-Nascido , Leite Humano/microbiologia , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Adulto Jovem
7.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709821

RESUMO

Bifidobacteria are members of the gut microbiota of animals, including mammals, birds, and social insects. In this study, we analyzed and determined the pangenome of Bifidobacterium animalis species, encompassing B. animalis subsp. animalis and the B. animalis subsp. lactis taxon, which is one of the most intensely exploited probiotic bifidobacterial species. In order to reveal differences within the B. animalis species, detailed comparative genomics and phylogenomics analyses were performed, indicating that these two subspecies recently arose through divergent evolutionary events. A subspecies-specific core genome was identified for both B. animalis subspecies, revealing the existence of subspecies-defining genes involved in carbohydrate metabolism. Notably, these in silico analyses coupled with carbohydrate profiling assays suggest genetic adaptations toward a distinct glycan milieu for each member of the B. animalis subspecies, resulting in a divergent evolutionary development of the two subspecies.IMPORTANCE The majority of characterized B. animalis strains have been isolated from human fecal samples. In order to explore genome variability within this species, we isolated 15 novel strains from the gastrointestinal tracts of different animals, including mammals and birds. The present study allowed us to reconstruct the pangenome of this taxon, including the genome contents of 56 B. animalis strains. Through careful assessment of subspecies-specific core genes of the B. animalis subsp. animalis/lactis taxon, we identified genes encoding enzymes involved in carbohydrate transport and metabolism, while unveiling specific gene acquisition and loss events that caused the evolutionary emergence of these two subspecies.


Assuntos
Bifidobacterium animalis/genética , Hibridização Genômica Comparativa , Evolução Molecular , Genes Bacterianos/genética , Filogenia , Animais , Bifidobacterium/genética , Bifidobacterium animalis/enzimologia , Bifidobacterium animalis/metabolismo , Aves , Metabolismo dos Carboidratos , Carboidratos , Fezes/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Variação Genética , Genoma Bacteriano/genética , Humanos , Mamíferos , Polissacarídeos , Especificidade da Espécie
8.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737347

RESUMO

Bifidobacteria are commensals of the animal gut and are commonly found in mammals, birds, and social insects. Specifically, strains of Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum, and Bifidobacterium pseudolongum are widely distributed in the mammalian gut. In this context, we investigated the genetic variability and metabolic abilities of the B. pseudolongum taxon, whose genomic characterization has so far not received much attention. Phylogenomic analysis of the genome sequences of 60 B. pseudolongum strains revealed that B. pseudolongum subsp. globosum and B. pseudolongum subsp. pseudolongum may actually represent two distinct bifidobacterial species. Furthermore, our analysis highlighted metabolic differences between members of these two subspecies. Moreover, comparative analyses of genetic strategies to prevent invasion of foreign DNA revealed that the B. pseudolongum subsp. globosum group exhibits greater genome plasticity. In fact, the obtained findings indicate that B. pseudolongum subsp. globosum is more adaptable to different ecological niches such as the mammalian and avian gut than is B. pseudolongum subsp. pseudolongumIMPORTANCE Currently, little information exists on the genetics of the B. pseudolongum taxon due to the limited number of sequenced genomes belonging to this species. In order to survey genome variability within this species and explore how members of this taxon evolved as commensals of the animal gut, we isolated and decoded the genomes of 51 newly isolated strains. Comparative genomics coupled with growth profiles on different carbohydrates has further provided insights concerning the genotype and phenotype of members of the B. pseudolongum taxon.


Assuntos
Bifidobacterium/genética , Microbioma Gastrointestinal/genética , Variação Genética , Genoma Bacteriano , Genômica , Animais , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Bifidobacterium/metabolismo , Bifidobacterium longum/genética , DNA Bacteriano/genética , Ecossistema , Microbioma Gastrointestinal/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Filogenia , Simbiose
9.
Int J Syst Evol Microbiol ; 69(5): 1288-1298, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30789326

RESUMO

Five Bifidobacterium strains, i.e. 2020BT, 2028BT, 2033BT, 2034BT and 2036BT, were isolated from European beaver (Castor fiber), Goeldi's marmoset (Callimicogoeldii), black-capped squirrel monkey (Saimiriboliviensissubsp. peruviensis) and Patagonian mara (Dolichotispatagonum). All of these isolates were shown to be Gram-positive, facultative anaerobic, d-fructose 6-phosphate phosphoketolase-positive, non-motile and non-sporulating. Phylogenetic analyses based on 16S rRNA gene sequences, multilocus sequences (including hsp60, rpoB, dnaJ, dnaG and clpC genes) and the core genome revealed that bifidobacterial strains 2020BT, 2028BT, 2033BT, 2034BT and 2036BT exhibit close phylogenetic relatedness to Bifidobacterium biavatii DSM 23969T, Bifidobacterium bifidum LMG 11041T, Bifidobacterium choerinum LMG 10510T, Bifidobacterium gallicum LMG 11596T, Bifidobacterium imperatoris LMG 30297T, Bifidobacterium italicum LMG 30187T and Bifidobacterium vansinderenii LMG 30126T, respectively. Further genotyping based on the genome sequence of the isolated strains combined with phenotypic analyses, clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, Bifidobacterium castoris sp. nov. (2020BT=LMG 30937T=CCUG 72816T), Bifidobacterium callimiconis sp. nov. (2028BT=LMG 30938T=CCUG 72814T), Bifidobacterium samirii sp. nov. (2033BT=LMG 30940T=CCUG 72817T), Bifidobacterium goeldii sp. nov. (2034BT=LMG 30939T=CCUG 72815T) and Bifidobacterium dolichotidis sp. nov. (2036BT=LMG 30941T=CCUG 72818T) are proposed as novel Bifidobacterium species.


Assuntos
Bifidobacterium/classificação , Callithrix/microbiologia , Filogenia , Roedores/microbiologia , Saimiri/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Fezes/microbiologia , Genes Bacterianos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Cell Mol Life Sci ; 75(1): 103-118, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28983638

RESUMO

Throughout the human life, the gut microbiota interacts with us in a number of different ways, thereby influencing our health status. The acquisition of such an interactive gut microbiota commences at birth. Medical and environmental factors including diet, antibiotic exposure and mode of delivery are major factors that shape the composition of the microbial communities in the infant gut. Among the most abundant members of the infant microbiota are species belonging to the Bifidobacterium genus, which are believed to confer beneficial effects upon their host. Bifidobacteria may be acquired directly from the mother by vertical transmission and their persistence in the infant gut is associated with their saccharolytic activity toward glycans that are abundant in the infant gut. Here, we discuss the establishment of the infant gut microbiota and the contribution of bifidobacteria to this early life microbial consortium.


Assuntos
Bifidobacterium/fisiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Interações Microbianas/fisiologia , Bifidobacterium/genética , Evolução Molecular , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/metabolismo , Humanos , Lactente , Interações Microbianas/genética , Polissacarídeos/metabolismo , Seleção Genética , Fatores de Tempo
11.
Gut ; 67(12): 2097-2106, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29705728

RESUMO

OBJECTIVES: The involvement of the gut microbiota in the pathogenesis of calcium nephrolithiasis has been hypothesised since the discovery of the oxalate-degrading activity of Oxalobacter formigenes, but never comprehensively studied with metagenomics. The aim of this case-control study was to compare the faecal microbiota composition and functionality between recurrent idiopathic calcium stone formers (SFs) and controls. DESIGN: Faecal samples were collected from 52 SFs and 48 controls (mean age 48±11). The microbiota composition was analysed through 16S rRNA microbial profiling approach. Ten samples (five SFs, five controls) were also analysed with deep shotgun metagenomics sequencing, with focus on oxalate-degrading microbial metabolic pathways. Dietary habits, assessed through a food-frequency questionnaire, and 24-hour urinary excretion of prolithogenic and antilithogenic factors, including calcium and oxalate, were compared between SFs and controls, and considered as covariates in the comparison of microbiota profiles. RESULTS: SFs exhibited lower faecal microbial diversity than controls (Chao1 index 1460±363vs 1658±297, fully adjusted p=0.02 with stepwise backward regression analysis). At multivariate analyses, three taxa (Faecalibacterium, Enterobacter, Dorea) were significantly less represented in faecal samples of SFs. The Oxalobacter abundance was not different between groups. Faecal samples from SFs exhibited a significantly lower bacterial representation of genes involved in oxalate degradation, with inverse correlation with 24-hour oxalate excretion (r=-0.87, p=0.002). The oxalate-degrading genes were represented in several bacterial species, whose cumulative abundance was inversely correlated with oxaluria (r=-0.85, p=0.02). CONCLUSIONS: Idiopathic calcium SFs exhibited altered gut microbiota composition and functionality that could contribute to nephrolithiasis physiopathology.


Assuntos
Microbioma Gastrointestinal/fisiologia , Nefrolitíase/microbiologia , Adulto , Idoso , Bactérias/classificação , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Biodiversidade , Oxalato de Cálcio/análise , Estudos de Casos e Controles , DNA Bacteriano/análise , Ingestão de Energia/fisiologia , Fezes/microbiologia , Feminino , Humanos , Masculino , Metagenômica/métodos , Pessoa de Meia-Idade , Nefrolitíase/metabolismo , Oxalatos/metabolismo , RNA Ribossômico 16S/análise , Recidiva , Adulto Jovem
12.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29222102

RESUMO

For decades, bacterial taxonomy has been based on in vitro molecular biology techniques and comparison of molecular marker sequences to measure the degree of genetic similarity and deduce phylogenetic relatedness of novel bacterial species to reference microbial taxa. Due to the advent of the genomic era, access to complete bacterial genome contents has become easier, thereby presenting the opportunity to precisely investigate the overall genetic diversity of microorganisms. Here, we describe a high-accuracy phylogenomic approach to assess the taxonomy of members of the genus Bifidobacterium and identify apparent misclassifications in current bifidobacterial taxonomy. The developed method was validated by the classification of seven novel taxa belonging to the genus Bifidobacterium by employing their overall genetic content. The results of this study demonstrate the potential of this whole-genome approach to become the gold standard for phylogenomics-based taxonomic classification of bacteria.IMPORTANCE Nowadays, next-generation sequencing has given access to genome sequences of the currently known bacterial taxa. The public databases constructed by means of these new technologies allowed comparison of genome sequences between microorganisms, providing information to perform genomic, phylogenomic, and evolutionary analyses. In order to avoid misclassifications in the taxonomy of novel bacterial isolates, new (bifido)bacterial taxons should be validated with a phylogenomic assessment like the approach presented here.


Assuntos
Bifidobacterium/classificação , Bifidobacterium/genética , Genoma Bacteriano , Filogenia , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética
13.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29884754

RESUMO

The repertoire of secreted proteins decoded by a microorganism represents proteins released from or associated with the cell surface. In gut commensals, such as bifidobacteria, these proteins are perceived to be functionally relevant, as they regulate the interaction with the gut environment. In the current study, we screened the predicted proteome of over 300 bifidobacterial strains among the currently recognized bifidobacterial species to generate a comprehensive database encompassing bifidobacterial extracellular proteins. A glycobiome analysis of this predicted bifidobacterial secretome revealed that a correlation exists between particular bifidobacterial species and their capability to hydrolyze human milk oligosaccharides (HMOs) and intestinal glycoconjugates, such as mucin. Furthermore, an exploration of metatranscriptomic data sets of the infant gut microbiota allowed the evaluation of the expression of bifidobacterial genes encoding extracellular proteins, represented by ABC transporter substrate-binding proteins and glycoside hydrolases enzymes involved in the degradation of human milk oligosaccharides and mucin. Overall, this study provides insights into how bifidobacteria interact with their natural yet highly complex environment, the infant gut.IMPORTANCE The ecological success of bifidobacteria relies on the activity of extracellular proteins that are involved in the metabolism of nutrients and the interaction with the environment. To date, information on secreted proteins encoded by bifidobacteria is incomplete and just related to few species. In this study, we reconstructed the bifidobacterial pan-secretome, revealing extracellular proteins that modulate the interaction of bifidobacteria with their natural environment. Furthermore, a survey of the secretion systems between bifidobacterial genomes allowed the identification of a conserved Sec-dependent secretion machinery in all the analyzed genomes and the Tat protein translocation system in the chromosomes of 23 strains belonging to Bifidobacterium longum subsp. longum and Bifidobacterium aesculapii.


Assuntos
Bifidobacterium/genética , Bifidobacterium/metabolismo , Microbioma Gastrointestinal/genética , Intestinos/microbiologia , Metaboloma , Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo , Fezes/microbiologia , Glicômica , Humanos , Lactente , Metagenoma , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Proteoma , Simbiose
14.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29728382

RESUMO

The genus Lactobacillus is a widespread taxon, members of which are highly relevant to functional and fermented foods, while they are also commonly present in host-associated gut and vaginal microbiota. Substantial efforts have been undertaken to disclose the genetic repertoire of all members of the genus Lactobacillus, and yet their species-level profiling in complex matrices is still undeveloped due to the poor phylotype resolution of profiling approaches based on the 16S rRNA gene. To overcome this limitation, an internal transcribed spacer (ITS)-based profiling method was developed to accurately profile lactobacilli at the species level. This approach encompasses a genus-specific primer pair combined with a database of ITS sequences retrieved from all available Lactobacillus genomes and a script for the QIIME software suite that performs all required steps to reconstruct a species-level profile. This methodology was applied to several environments, i.e., human gut and vagina and the ceca of free-range chickens, as well as whey and fresh cheese. Interestingly, the data collected confirmed a relevant role of lactobacilli present in functional and fermented foods in defining the population harbored by the human gut, while, unsurprisingly perhaps, the ceca of free-range chickens were observed to be dominated by lactobacilli characterized in birds living in natural environments. Moreover, vaginal swabs confirmed the existence of previously hypothesized community state types, while analysis of whey and fresh cheese revealed a dominant presence of single Lactobacillus species used as starters for cheese production. Furthermore, application of this ITS profiling method to a mock Lactobacillus community allowed a minimal resolution level of <0.006 ng/µl.IMPORTANCE The genus Lactobacillus is a large and ubiquitous taxon of high scientific and commercial relevance. Despite the fact that the genetic repertoire of Lactobacillus species has been extensively characterized, the ecology of this genus has been explored by metataxonomic techniques that are accurate down to the genus or phylogenetic group level only. Thus, the distribution of lactobacilli in environmental or processed food samples is relatively unexplored. The profiling protocol described here relies on the use of the internal transcribed spacer to perform an accurate classification in a target population of lactobacilli with a <0.006-ng/µl sensitivity. This approach was used to analyze five sample types collected from both human and animal host-associated microbiota, as well as from the cheese production chain. The availability of a tool for species-level profiling of lactobacilli may be highly useful for both academic research and a wide range of industrial applications.


Assuntos
Lactobacillus/genética , Lactobacillus/metabolismo , Metagenômica , Animais , Queijo/microbiologia , Galinhas , DNA Bacteriano/genética , Feminino , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Humanos , Lactobacillus/classificação , RNA Ribossômico 16S/genética , Vagina/microbiologia
15.
BMC Genomics ; 18(1): 568, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28764658

RESUMO

BACKGROUND: Members of the Bifidobacteriaceae family represent both dominant microbial groups that colonize the gut of various animals, especially during the suckling stage of their life, while they also occur as pathogenic bacteria of the urogenital tract. The pan-genome of the genus Bifidobacterium has been explored in detail in recent years, though genomics of the Bifidobacteriaceae family has not yet received much attention. Here, a comparative genomic analyses of 67 Bifidobacteriaceae (sub) species including all currently recognized genera of this family, i.e., Aeriscardovia, Alloscardovia, Bifidobacterium, Bombiscardovia, Gardnerella, Neoscardovia, Parascardovia, Pseudoscardovia and Scardovia, was performed. Furthermore, in order to include a representative of each of the 67 (currently recognized) (sub) species belonging to the Bifidobacteriaceae family, we sequenced the genomes of an additional 11 species from this family, accomplishing the most extensive comparative genomic analysis performed within this family so far. RESULTS: Phylogenomics-based analyses revealed the deduced evolutionary pathway followed by each member of the Bifidobacteriaceae family, highlighting Aeriscardovia aeriphila LMG 21773 as the deepest branch in the evolutionary tree of this family. Furthermore, functional analyses based on genome content unveil connections between a given member of the family, its carbohydrate utilization abilities and its corresponding host. In this context, bifidobacterial (sub) species isolated from humans and monkeys possess the highest relative number of acquired glycosyl hydrolase-encoding genes, probably in order to enhance their metabolic ability to utilize different carbon sources consumed by the host. CONCLUSIONS: Within the Bifidobacteriaceae family, genomics of the genus Bifidobacterium has been extensively investigated. In contrast, very little is known about the genomics of members of the other eight genera of this family. In this study, we decoded the genome sequences of each member of the Bifidobacteriaceae family. Thanks to subsequent comparative genomic and phylogenetic analyses, the deduced pan-genome of this family, as well as the predicted evolutionary development of each taxon belonging to this family was assessed.


Assuntos
Bifidobacterium/genética , Genômica , Filogenia , Evolução Molecular
16.
Environ Microbiol ; 19(11): 4771-4783, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967204

RESUMO

Different factors may modulate the gut microbiota of animals. In any particular environment, diet, genetic factors and human influences can shape the bacterial communities residing in the gastrointestinal tract. Metagenomic approaches have significantly expanded our knowledge on microbiota dynamics inside hosts, yet cultivation and isolation of bacterial members of these complex ecosystems may still be necessary to fully understand interactions between bacterial communities and their host. A dual approach, involving culture-independent and -dependent techniques, was used here to decipher the microbiota communities that inhabit the gastro intestinal tract of free-range, broiler and feral chickens. In silico analysis revealed the presence of a core microbiota that is typical of those animals that live in different geographical areas and that have limited contact with humans. Anthropic influences guide the metabolic potential and the presence of antibiotic resistance genes of these different bacterial communities. Culturomics attempts, based on different cultivation conditions, were applied to reconstruct in vitro the microbiota of feral chickens. A unique strain collection representing members of the four major phyla of the poultry microbiota was assembled, including bacterial strains that are not typically retrieved from the chicken gut.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Ceco/microbiologia , Galinhas/microbiologia , Microbioma Gastrointestinal/genética , Animais , Bactérias/genética , Dieta , Geografia , Humanos , Metagenômica
17.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864179

RESUMO

The microbiota of the human gastrointestinal tract (GIT) may regularly be exposed to antibiotics, which are used to prevent and treat infectious diseases caused by bacteria and fungi. Bacterial communities of the gut retain a reservoir of antibiotic resistance (AR) genes, and antibiotic therapy thus positively selects for those microorganisms that harbor such genetic features, causing microbiota modulation. During the first months following birth, bifidobacteria represent some of the most dominant components of the human gut microbiota, although little is known about their AR gene complement (or resistome). In the current study, we assessed the resistome of the Bifidobacterium genus based on phenotypic and genotypic data of members that represent all currently recognized bifidobacterial (sub)species. Moreover, a comparison between the bifidobacterial resistome and gut metagenome data sets from adults and infants shows that the bifidobacterial community present at the first week following birth possesses a reduced AR arsenal compared to that present in the infant bifidobacterial population in subsequent weeks of the first year of life. Our findings reinforce the concept that the early infant gut microbiota is more susceptible to disturbances by antibiotic treatment than the gut microbiota developed at a later life stage. IMPORTANCE: The spread of resistance to antibiotics among bacterial communities has represented a major concern since their discovery in the last century. The risk of genetic transfer of resistance genes between microorganisms has been extensively investigated due to its relevance to human health. In contrast, there is only limited information available on antibiotic resistance among human gut commensal microorganisms such as bifidobacteria, which are widely exploited by the food industry as health-promoting microorganisms or probiotic ingredients. In the current study, we explored the occurrence of antibiotic resistance genes in the genomes of bifidobacteria and evaluated their genetic mobility to other human gut commensal microorganisms.


Assuntos
Antibacterianos/farmacologia , Bifidobacterium/genética , Resistência Microbiana a Medicamentos/genética , Trato Gastrointestinal/microbiologia , Genes Bacterianos/genética , Bifidobacterium/efeitos dos fármacos , Humanos
18.
Int J Syst Evol Microbiol ; 67(10): 3987-3995, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28893355

RESUMO

A novel Bifidobacterium strain, Tam10BT, i.e. LMG 30126T, was isolated from emperor tamarin (Saguinus imperator). Cells were Gram-positive, non-motile, non-sporulating, non-haemolytic, facultative anaerobic and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA genes as well as multilocus sequences (representing hsp60, rpoB, dnaJ, dnaG and clpC genes) and the core genome revealed that Bifidobacterium Tam10BT exhibited close phylogenetic relatedness to Bifidobacterium tissieri DSM 100201T. Comparative analysis of 16S rRNA gene sequences confirmed the phylogenetic results showing the highest gene sequence identity with strain B. tissieri DSM 100201T (96.5 %). Furthermore, genotyping based on the genome sequence of Tam 10B, in combination with phenotypic analyses, clearly showed that strain Tam10BT is distinct from each of the type strains of the so far recognized Bifidobacterium species. The type strain Tam10BT (=LMG 30126T=CCUG 70655T) represents a novel species, for which the name Bifidobacteriumvansinderenii sp. nov is proposed.


Assuntos
Bifidobacterium/classificação , Filogenia , Saguinus/microbiologia , Aldeído Liases/genética , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , DNA Bacteriano/genética , Fezes/microbiologia , Genes Bacterianos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Environ Microbiol ; 18(12): 4727-4738, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27129897

RESUMO

The gastrointestinal tract of poultry is densely populated with microorganisms, which are presumed to interact with the host and ingested feed. Comparison of the gut microbiota of chickens used for large-scale commercial production (Broiler Chicken, BC) and those grown in semi-wild conditions (Free-Range Chicken, FRC) revealed that at phylum level Firmicutes was the dominant phylum of the gut community in BC, while the gut microbiota of FRC contained higher levels of Bacteroidetes and Proteobacteria. Such differences may be due to the diet and/or the intensive use of antibiotics in BC. Indeed, analysis of the resistome of the cecal microbiomes showed a marked richness in BC datasets, with a modulation of the cecal microbiota toward antibiotic resistant bacteria. Functional characterization of the microbiome of FRC samples revealed an increase in gene pathways involved in degradation of complex carbohydrates. Furthermore, in silico analyses of the microbiomes of FRC and BC revealed a higher presence in genes involved in formate production in BC samples. Notably, compared to the BC microbiomes the FRC microbiomes were shown to contain a higher abundance of genes involved in the pathway for acetate production.


Assuntos
Galinhas/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/genética , Bacteroidetes/genética , Biodiversidade , Ceco/microbiologia , Dieta , RNA Ribossômico 16S/genética
20.
Environ Microbiol ; 18(7): 2196-213, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26627180

RESUMO

Phage predation is one of the key forces that shape genetic diversity in bacterial genomes. Phages are also believed to act as modulators of the microbiota composition and, consequently, as agents that drive bacterial speciation in complex bacterial communities. Very little is known about the occurrence and genetic variability of (pro)phages within the Bifidobacterium genus, a dominant bacterial group of the human infant microbiota. Here, we performed cataloguing of the predicted prophage sequences from the genomes of all currently recognized bifidobacterial type strains. We analysed their genetic diversity and deduced their evolutionary development, thereby highlighting an intriguing origin. Furthermore, we assessed infant gut microbiomes for the presence of (pro)phage sequences and found compelling evidence that these viral elements influence the composition of bifidobacterial communities in the infant gut microbiota.


Assuntos
Bifidobacterium/virologia , Microbioma Gastrointestinal , Prófagos/isolamento & purificação , Bifidobacterium/classificação , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Evolução Biológica , Feminino , Trato Gastrointestinal/microbiologia , Variação Genética , Humanos , Lactente , Masculino , Filogenia , Prófagos/classificação , Prófagos/genética , Prófagos/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa