Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 131(1): 65-73, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24903976

RESUMO

The role of physical exercise as a neuroprotective agent against ischemic injury has been extensively discussed. Nevertheless, the mechanisms underlying the effects of physical exercise on cerebral ischemia remain poorly understood. Here, we investigate the hypothesis that physical exercise increases ischemic tolerance by decreasing the induction of cellular apoptosis and glutamate release. Rats (n = 50) were submitted to a swimming exercise protocol for 8 weeks. Hippocampal slices were then submitted to oxygen and glucose deprivation. Cellular viability, pro-apoptotic markers (Caspase 8, Caspase 9, Caspase 3, and apoptosis-inducing factor), and glutamate release were analyzed. The percentage of cell death, the amount of glutamate release, and the expression of the apoptotic markers were all decreased in the exercise group when compared to the sedentary group after oxygen and glucose deprivation. Our results suggest that physical exercise protects hippocampal slices from the effects of oxygen and glucose deprivation, probably by a mechanism involving both the decrease of glutamatergic excitotoxicity and apoptosis induction.


Assuntos
Fator de Indução de Apoptose/metabolismo , Caspases/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Peso Corporal/fisiologia , Hipóxia Celular/fisiologia , Sobrevivência Celular/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar
2.
Behav Brain Res ; 313: 260-271, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27449201

RESUMO

The way the rodent brain generally processes socially relevant information is rather well understood. How social information is stored into long-term social memory, however, is still under debate. Here, brain c-Fos expression was measured after adult mice were exposed to familiar or novel juveniles and expression was compared in several memory and socially relevant brain areas. Machine Learning algorithm Random Forest was then used to predict the social interaction category of adult mice based on c-Fos expression in these areas. Interaction with a familiar co-specific altered brain activation in the olfactory bulb, amygdala, hippocampus, lateral septum and medial prefrontal cortex. Remarkably, Random Forest was able to predict interaction with a familiar juvenile with 100% accuracy. Activity in the olfactory bulb, amygdala, hippocampus and the medial prefrontal cortex were crucial to this prediction. From our results, we suggest long-term social memory depends on initial social olfactory processing in the medial amygdala and its output connections synergistically with non-social contextual integration by the hippocampus and medial prefrontal cortex top-down modulation of primary olfactory structures.


Assuntos
Memória de Longo Prazo/fisiologia , Memória/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Social , Tonsila do Cerebelo/metabolismo , Animais , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/fisiologia , Córtex Pré-Frontal/fisiologia , Olfato/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa