Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 148(5): 1245-1259, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152121

RESUMO

Tumour stromal cells support tumourigenesis. We report that Syndecan-2 (SDC2) is expressed on a nonepithelial, nonhaematopoietic, nonendothelial stromal cell population within breast cancer tissue. In vitro, syndecan-2 modulated TGFß signalling (SMAD7, PAI-1), migration and immunosuppression of patient-derived tumour-associated stromal cells (TASCs). In an orthotopic immunocompromised breast cancer model, overexpression of syndecan-2 in TASCs significantly enhanced TGFß signalling (SMAD7, PAI-1), tumour growth and metastasis, whereas reducing levels of SDC2 in TASCs attenuated TGFß signalling (SMAD7, PAI-1, CXCR4), tumour growth and metastasis. To explore the potential for therapeutic application, a syndecan-2-peptide was generated that inhibited the migratory and immunosuppressive properties of TASCs in association with reduced expression of TGFß-regulated immunosuppressive genes, such as CXCR4 and PD-L1. Moreover, using an orthotopic syngeneic breast cancer model, overexpression of syndecan-2-peptide in TASCs reduced tumour growth and immunosuppression within the TME. These data provide evidence that targeting stromal syndecan-2 within the TME inhibits tumour growth and metastasis due to decreased TGFß signalling and increased immune control.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Evasão da Resposta Imune , Sindecana-2/antagonistas & inibidores , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/fisiologia , Sindecana-2/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Microambiente Tumoral
2.
BMC Med ; 15(1): 79, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28399921

RESUMO

BACKGROUND: Endocrine therapy is standard treatment for estrogen receptor (ER)-positive breast cancer. However, its efficacy is limited by intrinsic and acquired resistance. Here the potential of S100ß as a biomarker and inhibition of its signaling network as a therapeutic strategy in endocrine treated patients was investigated. METHODS: The expression of S100ß in tissue and serum was assessed by immunohistochemistry and an enzyme-linked immunosorbent assay, respectively. The S100ß signaling network was investigated in cell line models of endocrine resistance by western blot, PCR, immunoprecipitation, and chromatin-immunoprecipitation. Endocrine resistant xenografts and tumor explants from patients with resistant tumors were treated with endocrine therapy in the presence and absence of the p-Src kinase inhibitor, dasatinib. RESULTS: Tissue and serum levels of S100ß were found to predict poor disease-free survival in endocrine-treated patients (n = 509, HR 2.32, 95% CI is 1.58-3.40, p < 0.0001 and n = 187, HR 4.009, 95% CI is 1.66-9.68, p = 0.002, respectively). Moreover, elevated levels of serum S100ß detected during routine surveillance over the patient treatment period significantly associated with subsequent clinically confirmed disease recurrence (p = 0.019). In vivo studies demonstrated that endocrine treatment induced transcriptional regulation of S100ß which was successfully disrupted with tyrosine kinase inhibition. In endocrine resistant xenografts and tumor explants from patients with endocrine resistant breast cancer, combined endocrine and dasatinib treatment reduced tumor proliferation and down-regulated S100ß protein expression in comparison to endocrine treatment alone. CONCLUSIONS: S100ß has potential as a new surveillance tool for patients with ER-positive breast cancer to monitor ongoing response to endocrine therapy. Moreover, endocrine resistant breast cancer patients with elevated S100ß may benefit from combined endocrine and tyrosine-kinase inhibitor treatment. TRIAL REGISTRATION: ClinicalTrials.gov,  NCT01840293 ). Registered on 23 April 2013. Retrospectively registered.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Biomarcadores/sangue , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/uso terapêutico , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Anal Bioanal Chem ; 409(14): 3497-3505, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28349168

RESUMO

The detection and profiling of microRNAs are of great interest in disease diagnosis and prognosis. In this paper, we present a method for the rapid amplification-free detection of microRNAs from total RNA samples. In a two-step sandwich assay approach, fluorescently labeled reporter probes were first hybridized with their corresponding target microRNAs. The reaction mix was then added to a microarray to enable their specific capture and detection. Reporter probes were Tm equalized, enabling specificity by adjusting the length of the capture probe while maintaining the stabilizing effect brought about by coaxial base stacking. The optimized assay can specifically detect microRNAs in spiked samples at concentrations as low as 1 pM and from as little as 100 ng of total RNA in 2 h. The detection signal was linear between 1 and 100 pM (R2 = 0.99). Our assay data correlated well with results generated by qPCR when we profiled a select number of breast cancer related microRNAs in a total RNA sample.


Assuntos
MicroRNAs/análise , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Análise de Sequência com Séries de Oligonucleotídeos/economia , Sondas de Oligonucleotídeos/química , Espectrometria de Fluorescência/economia , Espectrometria de Fluorescência/métodos , Fatores de Tempo
4.
Int J Mol Sci ; 18(6)2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28538671

RESUMO

There remains an urgent need for novel therapeutic strategies to treat metastatic cancer, which results in over 8 million deaths annually worldwide. Following secretion, exosomes are naturally taken up by cells, and capable of the stable transfer of drugs, therapeutic microRNAs and proteins. As knowledge of the biogenesis, release and uptake of exosomes continues to evolve, and thus also has interest in these extracellular vesicles as potential tumor-targeted vehicles for cancer therapy. The ability to engineer exosome content and migratory itinerary holds tremendous promise. Studies to date have employed viral and non-viral methods to engineer the parent cells to secrete modified exosomes, or alternatively, to directly manipulate exosome content following secretion. The majority of studies have demonstrated promising results, with decreased tumor cell invasion, migration and proliferation, along with enhanced immune response, cell death, and sensitivity to chemotherapy observed. The studies outlined in this review highlight the exciting potential for exosomes as therapeutic vehicles for cancer treatment. Successful implementation in the clinical setting will be dependent upon establishment of rigorous standards for exosome manipulation, isolation, and characterisation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Exossomos/genética , Engenharia Genética/métodos , Imunoterapia/métodos , Neoplasias/terapia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Exossomos/imunologia , Humanos , MicroRNAs/administração & dosagem , MicroRNAs/uso terapêutico , Neoplasias/genética , Neoplasias/imunologia
5.
Int J Cancer ; 139(7): 1443-8, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27170104

RESUMO

Breast cancer is a highly prevalent disease, accounting for 29% of invasive cancers in women. Survival from this disease depends on the stage at diagnosis, with patients who are detected earlier having more favourable outcomes. It is because of this that research groups are focusing on the development of a blood-based biomarker for breast cancer. Such biomarkers may facilitate the detection of breast cancer in its infancy before it has spread beyond the primary site. MicroRNAs (miRNAs) have shown immense potential in this setting. These short, non-coding RNA sequences have been shown to be dysregulated in breast cancer. Despite showing immense promise, miRNAs have not been successfully implemented in the clinical setting due to a lack of a standardised approach which has resulted in conflicting results. These challenges may be addressed at least in part through the study of exosomes. The biomarker potential for exosomes holds huge promise and may revolutionise the way in which we diagnose and manage breast cancer. These nanovesicles may be isolated from a variety of bodily fluids, including serum, and their miRNA content has been shown to reflect that of the parent breast cancer cell. This review will highlight the nomenclature and defining characteristics of exosomes, and current methods of isolation of serum-derived exosomes. Initial promising reports on the potential utility of exosomal miRNAs to be used as breast cancer biomarkers will also be addressed.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Exossomos/genética , MicroRNAs/sangue , Animais , Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Exossomos/metabolismo , Feminino , Humanos , MicroRNAs/genética
6.
BMC Cancer ; 15: 345, 2015 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-25934412

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are short non-coding RNA molecules that play a critical role in mRNA cleavage and translational repression, and are known to be altered in many diseases including breast cancer. MicroRNA-10a (miR-10a) has been shown to be deregulated in various cancer types. The aim of this study was to investigate miR-10a expression in breast cancer and to further delineate the role of retinoids and thyroxine in regulation of miR-10a. METHODS: Following informed patient consent and ethical approval, tissue samples were obtained during surgery. miR-10a was quantified in malignant (n = 103), normal (n = 30) and fibroadenoma (n = 35) tissues by RQ-PCR. Gene expression of Retinoic Acid Receptor beta (RARß) and Thyroid Hormone receptor alpha (THRα) was also quantified in the same patient samples (n = 168). The in vitro effects of all-trans Retinoic acid (ATRA) and L-Thyroxine (T4) both individually and in combination, on miR-10a expression was investigated in breast cancer cell lines, T47D and SK-BR-3. RESULTS: The level of miR-10a expression was significantly decreased in tissues harvested from breast cancer patients (Mean (SEM) 2.1(0.07)) Log10 Relative Quantity (RQ)) compared to both normal (3.0(0.16) Log10 RQ, p < 0.001) and benign tissues (2.6(0.17) Log10 RQ, p < 0.05). The levels of both RARß and THRα gene expression were also found to be decreased in breast cancer patients compared to controls (p < 0.001). A significant positive correlation was determined between miR-10a and RARß (r = 0.31, p < 0.001) and also with THRα (r = 0.32, p < 0.001). In vitro stimulation assays revealed miR-10a expression was increased in both T47D and SK-BR-3 cells following addition of ATRA (2 fold (0.7)). While T4 alone did not stimulate miR-10a expression, the combination of T4 and ATRA was found to have a positive synergistic effect. CONCLUSION: The data presented supports a potential tumour suppressor role for miR-10a in breast cancer, and highlights retinoic acid as a positive regulator of the microRNA.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , MicroRNAs/metabolismo , Tretinoína/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Feminino , Fibroadenoma/metabolismo , Expressão Gênica , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Adulto Jovem
7.
Biochem Biophys Res Commun ; 435(4): 574-9, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23685140

RESUMO

Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs+antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1 and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67-88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the significant functional impact of Mesenchymal Stem Cell-secreted PAI-1 on colon cancer cells.


Assuntos
Comunicação Celular , Neoplasias do Colo/patologia , Neoplasias do Colo/fisiopatologia , Células-Tronco Mesenquimais/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos
8.
Int J Cancer ; 131(1): 1-7, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22290082

RESUMO

Mesenchymal stem cells (MSCs) are nonhematopoietic multipotent adult stem cells. They have been shown to have a natural tropism for many tumors types, including colorectal, and are capable of escaping host immune surveillance. MSCs are known to engraft at tumors and integrate into their architecture, potentially as carcinoma-associated fibroblasts. In contrast with other malignancies, our understanding of the interactions between colorectal cancer cells and MSCs remains limited. Considering the established importance of inflammation in the colorectal cancer primary tumor microenvironment and the role of stromal cells in this process, there is a potential wealth of information to be gleaned from further investigation of interactions between these cell populations. Epithelial-mesenchymal transition is central to colorectal cancer progression and MSCs have also been implicated in this process. This review explores the current knowledge (both in vitro and in vivo) of interactions between colorectal cancer cells and MSCs. It highlights potential effects of cell source, number and ratio on outcome of in vivo studies and explores strategies to more accurately explore their role in the primary tumor microenvironment. As our understanding of the underlying molecular processes in colorectal cancer develops, elucidation of these interactions will be central to development of novel therapeutic strategies for this prevalent disease.


Assuntos
Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Células-Tronco Mesenquimais/fisiologia , Microambiente Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Progressão da Doença , Humanos , Transdução de Sinais
9.
Breast Cancer Res Treat ; 131(2): 401-11, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21344235

RESUMO

Stromal cell-secreted chemokines including CCL2 have been implicated in the primary tumor microenvironment, as mediators of tumor cell migration, proliferation, and angiogenesis. Expression of CCL2 and its principal receptor CCR2 was analyzed by RQ-PCR in primary tumor cells and breast cancer cell lines. Breast cancer cell lines (MDA-MB-231, T47D) were co-cultured directly on a monolayer of primary breast tumor and normal stromal cells, retrieved using EpCAM+ magnetic beads, and changes in expression of CCL2, CCR2, MMP11, ELK1, VIL2, and Ki67 detected by RQ-PCR. Epithelial cell migration and proliferation in response to stromal cell-secreted factors was also analyzed. In vivo, tumor xenografts were formed by co-injecting T47D cells with primary tumor stromal cells. Following establishment, tumors were harvested and digested, epithelial cells retrieved and analyzed by RQ-PCR. Whole tumor tissue was also analyzed by immunohistochemistry for CD31 and the VIL2 encoded protein Ezrin. Tumor stromal cells expressed significantly higher levels of CCL2 than normal cells, with no CCR2 expression detected. Primary epithelial cells and breast cancer cell lines expressed elevated CCL2, with relative expression of CCR2 found to be higher than the ligand. Interaction of breast cancer epithelial cells with primary tumor, but not normal stromal cells, stimulated increased expression of CCL2 (8-fold), ELK1 (6-fold), VIL2 (6-fold), and MMP11 (17-fold). Factors secreted by stromal cells, including CCL2, stimulated a significant increase in epithelial cell migration, with no effect on cell proliferation in vitro observed. In vivo, the presence of stromal cells resulted in tumors of increased volume, mediated at least in part through neoangiogenesis demonstrated by immunohistochemistry (CD31). Admixed tumor xenografts exhibited increased expression of Ki67, MMP11, VIL2, and ELK1. Elevated Ezrin protein was also detected, with increased cytoplasmic localization. The results presented highlight mechanisms through which breast cancer epithelial cells can harness stromal cell biology to support tumor progression.


Assuntos
Neoplasias da Mama/metabolismo , Células Epiteliais/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Separação Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Técnicas de Cocultura , Células Epiteliais/patologia , Feminino , Humanos , Imunofenotipagem , Camundongos , Invasividade Neoplásica/genética , Células Estromais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Stem Cells ; 29(7): 1149-57, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21608083

RESUMO

Mesenchymal Stem Cells (MSCs) migrate specifically to tumors in vivo, and coupled with their capacity to bypass immune surveillance, are attractive vehicles for tumor-targeted delivery of therapeutic agents. This study aimed to introduce MSC-mediated expression of the sodium iodide symporter (NIS) for imaging and therapy of breast cancer. Tumor bearing animals received an intravenous or intratumoral injection of NIS expressing MSCs (MSC-NIS), followed by (99m) Technetium pertechnetate imaging 3-14 days later using a BazookaSPECT γ-camera. Tissue was harvested for analysis of human NIS (hNIS) expression by relative quantitative-polymerase chain reaction. Therapy animals received an i.p. injection of (131) I or saline 14 days after injection of MSC-NIS, and tumor volume was monitored for 8 weeks. After injection of MSC-NIS, BazookaSPECT imaging revealed an image of animal intestines and chest area at day 3, along with a visible weak tumor image. By day 14, the tumor was visible with a significant reduction in radionuclide accumulation in nontarget tissue observed. hNIS gene expression was detected in the intestines, heart, lungs, and tumors at early time points but later depleted in nontarget tissues and persisted at the tumor site. Based on imaging/biodistribution data, animals received a therapeutic dose of (131) I 14 days after MSC-NIS injection. This resulted in a significant reduction in tumor growth (mean ± SEM, 236 ± 62 mm(3) vs. 665 ± 204 mm(3) in controls). The ability to track MSC migration and transgene expression noninvasively in real time before therapy is a major advantage to this strategy. This promising data supports the feasibility of this approach as a novel therapy for breast cancer.


Assuntos
Neoplasias da Mama/terapia , Terapia Genética/métodos , Células-Tronco Mesenquimais/fisiologia , Simportadores/biossíntese , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Radioisótopos do Iodo/farmacocinética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase , Cintilografia , Simportadores/genética , Distribuição Tecidual , Transfecção
11.
Bone Rep ; 17: 101597, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35754558

RESUMO

Cancer cells favour migration and metastasis to bone tissue for 70-80 % of advanced breast cancer patients and it has been proposed that bone tissue provides attractive physical properties that facilitate tumour invasion, resulting in osteolytic and or osteoblastic metastasis. However, it is not yet known how specific bone tissue composition is associated with tumour invasion. In particular, how compositional and nano-mechanical properties of bone tissue evolve during metastasis, and where in the bone they arise, may affect the overall aggressiveness of tumour invasion, but this is not well understood. The objective of this study is to develop an advanced understanding of temporal and spatial changes in nano-mechanical properties and composition of bone tissue during metastasis. Primary mammary tumours were induced by inoculation of immune-competent BALB/c mice with 4T1 breast cancer cells in the mammary fat pad local to the right femur. Microcomputed tomography and nanoindentation were conducted to quantify cortical and trabecular bone matrix mineralisation and nano-mechanical properties. Analysis was performed in proximal and distal femur regions (spatial analysis) of tumour-adjacent (ipsilateral) and contralateral femurs after 3 weeks and 6 weeks of tumour and metastasis development (temporal analysis). By 3 weeks post-inoculation there was no significant difference in bone volume fraction or nano-mechanical properties of bone tissue between the metastatic femora and healthy controls. However, early osteolysis was indicated by trabecular thinning in the distal and proximal trabecular compartment of tumour-bearing femora. Moreover, cortical thickness was significantly increased in the distal region, and the mean mineral density was significantly higher in cortical and trabecular bone tissue in both proximal and distal regions, of ipsilateral (tumour-bearing) femurs compared to healthy controls. By 6 weeks post-inoculation, overt osteolytic lesions were identified in all ipsilateral metastatic femora, but also in two of four contralateral femora of tumour-bearing mice. Bone volume fraction, cortical area, cortical and trabecular thickness were all significantly decreased in metastatic femora (both ipsilateral and contralateral). Trabecular bone tissue stiffness in the proximal femur decreased in the ipsilateral femurs compared to contralateral and control sites. Temporal and spatial analysis of bone nano-mechanical properties and mineralisation during breast cancer invasion reveals changes in bone tissue composition prior to and following overt metastatic osteolysis, local and distant from the primary tumour site. These changes may alter the mechanical environment of both the bone and tumour cells, and thereby play a role in perpetuating the cancer vicious cycle during breast cancer metastasis to bone tissue.

12.
Tissue Cell ; 77: 101858, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35777289

RESUMO

BACKGROUND AND AIM: Adipose-derived stromal cells (ASCs) are a promising cell source for novel tissue engineering approaches to breast reconstruction following cancer resection. However there is limited knowledge on the effect of adjuvant therapies such as hormonal therapy on ASCs, which may affect their efficacy in regenerative strategies. The present study aims to investigate the effects of Tamoxifen and its metabolites Afimoxifene (4-Hydroxy-Tamoxifen) and Endoxifen (N-desmethyl-4-hydroxytamoxifen) on patient-derived ASC viability, apoptosis, adipogenic differentiation and angiogenic potential. METHODS: ASCs were isolated from fat harvested from female breast cancer patients undergoing breast reconstruction surgery or cosmetic procedures. Oestrogen receptor (ER α, ß) expression was analysed using immunofluorescence. ASCs were then treated with various concentrations of Afimoxifene, Endoxifen and Tamoxifen (combination), and the impact on ASC viability and apoptosis determined. ASCs were cultured in adipogenic-differentiation media with or without tamoxifen and derivatives, and adipogenesis was measured using quantitative Real-time Polymerase chain reaction (qRT-PCR) and histological staining (Oil Red O). The effect on secreted VEGF levels was also quantified in ASC conditioned media RESULTS: ASCs were successfully isolated and characterised from human abdominal lipoaspirates or fat tissues (n = 8). ASCs subjected to varying doses of Tamoxifen and metabolites (up to 1000 nM) showed no decline in cell viability or increase in apoptosis, at physiological doses (upto 100 nM). Functional decline in adipogenic differentiation or gene expression was observed at supraphysiological concentrations of Tamoxifen (1000 nM). VEGF165 protein secretion in ASC-cell conditioned media was not significantly impacted irrespective of dosage. CONCLUSION: At physiologically relevant doses, Tamoxifen treatment did not result in any deleterious effect on ASC survival and functionality and is unlikely to negatively impact ASC based breast reconstruction strategies for breast cancer patients receiving this adjuvant hormonal therapy.


Assuntos
Neoplasias da Mama , Fator A de Crescimento do Endotélio Vascular , Tecido Adiposo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Diferenciação Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Células Estromais , Tamoxifeno/farmacologia
13.
Sci Rep ; 12(1): 10851, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761023

RESUMO

Extracellular vesicles (EVs) are nanoparticles found in all biological fluids, capable of transporting biological material around the body. Extensive research into the physiological role of EVs has led to the development of the Minimal Information for Studies of Extracellular Vesicles (MISEV) framework in 2018. This framework guides the standardisation of protocols in the EV field. To date, the focus has been on EVs of human origin. As comparative medicine progresses, there has been a drive to study similarities between diseases in humans and animals. To successfully research EVs in felines, we must validate the application of the MISEV guidelines in this group. EVs were isolated from the plasma of healthy humans and felines. EV characterisation was carried out according to the MISEV guidelines. Human and feline plasma showed a similar concentration of EVs, comparable expression of known EV markers and analogous particle to protein ratios. Mass spectrometry analyses showed that the proteomic signature of EVs from humans and felines were similar. Asymmetrical flow field flow fractionation, showed two distinct subpopulations of EVs isolated from human plasma, whereas only one subpopulation was isolated from feline plasma. Metabolomic profiling showed similar profiles for humans and felines. In conclusion, isolation, and characterisation of EVs from humans and felines show that MISEV2018 guidelines may also be applied to felines. Potential comparative medicine studies of EVs may provide a model for studying naturally occurring diseases in both humans and felines.


Assuntos
Vesículas Extracelulares , Fracionamento por Campo e Fluxo , Animais , Transporte Biológico , Gatos , Humanos , Plasma , Proteômica
14.
Cancer Med ; 11(20): 3820-3836, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35434898

RESUMO

BACKGORUND: Prior data suggest pre-diagnostic aspirin use impacts breast tumour biology and patient outcome. Here, we employed faithful surgical resection models of HER2+ and triple-negative breast cancer (TNBC), to study outcome and response mechanisms across breast cancer subtypes. METHOD: NOD/SCID mice were implanted with HER2+ MDA-MB-231/LN/2-4/H2N, trastuzumab-resistant HER2+ HCC1954 or a TNBC patient-derived xenograft (PDX). A daily low-dose aspirin regimen commenced until primary tumours reached ~250 mm3 and subsequently resected. MDA-MB-231/LN/2-4/H2N mice were monitored for metastasis utilising imaging. To interrogate the survival benefit of pre-treatment aspirin, 3 weeks post-resection, HCC1954/TNBC animals received standard-of-care (SOC) chemotherapy for 6 weeks. Primary tumour response to aspirin was interrogated using immunohistochemistry. RESULTS: Aspirin delayed time to metastasis in MDA-MB-231/LN/2-4/H2N xenografts and decreased growth of HER2+ /TNBC primary tumours. Lymphangiogenic factors and lymph vessels number were decreased in HER2+ tumours. However, no survival benefit was seen in aspirin pre-treated animals (HCC1954/TNBC) that further received adjuvant SOC, compared with animals treated with SOC alone. In an effort to study mechanisms responsible for the observed reduction in lymphangiogenesis in HER2+ BC we utilised an in vitro co-culture system of HCC1954 tumour cells and mesenchymal stromal cells (MSC). Aspirin abrogated the secretion of VEGF-C in MSCs and also decreased the lymph/angiogenic potential of the MSCs and HCC1954 by tubule formation assay. Furthermore, aspirin decreased the secretion of uPA in HCC1954 cells potentially diminishing its metastatic capability. CONCLUSION: Our data employing clinically relevant models demonstrate that aspirin alters breast tumour biology. However, aspirin may not represent a robust chemo-preventative agent in the HER2+ or TNBC setting.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Receptor ErbB-2 , Neoplasias de Mama Triplo Negativas/patologia , Fator C de Crescimento do Endotélio Vascular , Aspirina/farmacologia , Aspirina/uso terapêutico , Linhagem Celular Tumoral , Camundongos SCID , Camundongos Endogâmicos NOD , Trastuzumab/uso terapêutico , Neoplasias da Mama/patologia
15.
Biomedicines ; 9(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356891

RESUMO

Many microRNAs exist in clusters that share comparable sequence homology and may target genes in a common pathway. The miR-379/miR-656 (C14MC) cluster is imprinted in the DLK1-Dio3 region of 14q32.3 and contains 42 miRNAs. It plays a functional role in numerous biological pathways including vascular remodeling and early development. With many C14MC miRNAs highlighted as potential tumor suppressors in a variety of cancers, the role of this cluster in breast cancer (BC) has garnered increased attention in recent years. This review focuses on C14MC in BC, providing an overview of the constituent miRNAs and addressing each in terms of functional impact, potential target genes/pathways, and, where relevant, biomarker capacity. Studies have revealed the regulation of key factors in disease progression and metastasis including tyrosine kinase pathways and factors critical to epithelial-mesenchymal transition (EMT). This has potentially important clinical implications, with EMT playing a critical role in BC metastasis and tyrosine kinase inhibitors (TKIs) in widespread use for the treatment of BC. While the majority of studies have reported tumor-suppressing roles for these miRNAs, some have highlighted their potential as oncomiRs. Understanding the collective contribution of miRNAs within C14MC to BC may support improved understanding of disease etiology and present novel approaches to targeted therapy.

16.
Biomedicines ; 9(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34829923

RESUMO

Synthetic and naturally occurring nano-sized particles present versatile vehicles for the delivery of therapy in a range of clinical settings. Their small size and modifiable physicochemical properties support refinement of targeting capabilities, immune response, and therapeutic cargo, but rapid clearance from the body and limited efficacy remain a major challenge. This highlights the need for a local sustained delivery system for nanoparticles (NPs) and extracellular vesicles (EVs) at the target site that will ensure prolonged exposure, maximum efficacy and dose, and minimal toxicity. Biocompatible hydrogels loaded with therapeutic NPs/EVs hold immense promise as cell-free sustained and targeted delivery systems in a range of disease settings. These bioscaffolds ensure retention of the nano-sized particles at the target site and can also act as controlled release systems for therapeutics over a prolonged period of time. The encapsulation of stimuli sensitive components into hydrogels supports the release of the content on-demand. In this review, we highlight the prospect of the sustained and prolonged delivery of these nano-sized therapeutic entities from hydrogels for broad applications spanning tissue regeneration and cancer treatment. Further understanding of the parameters controlling the release rate of these particles and efficient transfer of cargo to target cells will be fundamental to success.

17.
Stem Cell Rev Rep ; 17(2): 523-538, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32929604

RESUMO

Tissue engineering using Adipose Derived Stromal Cells (ADSCs) has emerged as a novel regenerative medicine approach to replace and reconstruct soft tissue damaged or lost as a result of disease process or therapeutic surgical resection. ADSCs are an attractive cell source for soft tissue regeneration due to the fact that they are easily accessible, multipotent, non-immunogenic and pro-angiogenic. ADSC based regenerative strategies have been successfully translated to the clinical setting for the treatment of Crohn's fistulae, musculoskeletal pathologies, wound healing, and cosmetic breast augmentation (fat grafting). ADSCs are particularly attractive as a source for adipose tissue engineering as they exhibit preferential differentiation to adipocytes and support maintenance of mature adipose graft volume. The potential for reconstruction with an autologous tissue sources and a natural appearance and texture is particularly appealing in the setting of breast cancer; up to 40% of patients require mastectomy for locoregional control and current approaches to post-mastectomy breast reconstruction (PMBR) are limited by the potential for complications at the donor and reconstruction sites. Despite their potential, the use of ADSCs in breast cancer patients is controversial due to concerns regarding oncological safety. These concerns relate to the regeneration of tissue at a site where a malignancy has been treated and the impact this may have on stimulating local disease recurrence or dissemination. Pre-clinical data suggest that ADSCs exhibit pro-oncogenic characteristics and are involved in stimulating progression, and growth of tumour cells. However, there have been conflicting reports on the oncologic outcome, in terms of locoregional recurrence, for breast cancer patients in whom ADSC enhanced fat grafting was utilised as an alternative to reconstruction for small volume defects. A further consideration which may impact the successful translation of ADSC based regenerative strategies for post cancer reconstruction is the potential effects of cancer therapy. This review aims to address the effect of malignant cells, adjuvant therapies and patient-specific factors that may influence the success of regenerative strategies using ADSCs for post cancer tissue regeneration.


Assuntos
Tecido Adiposo/citologia , Neoplasias da Mama , Mamoplastia , Células Estromais/citologia , Tecido Adiposo/transplante , Neoplasias da Mama/terapia , Feminino , Humanos , Mastectomia , Regeneração
18.
J Biomed Opt ; 26(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33432788

RESUMO

SIGNIFICANCE: Assessment of disease using optical coherence tomography is an actively investigated problem, owing to many unresolved challenges in early disease detection, diagnosis, and treatment response monitoring. The early manifestation of disease or precancer is typically associated with subtle alterations in the tissue dielectric and ultrastructural morphology. In addition, biological tissue is known to have ultrastructural multifractality. AIM: Detection and characterization of nanosensitive structural morphology and multifractality in the tissue submicron structure. Quantification of nanosensitive multifractality and its alteration in progression of tumor. APPROACH: We have developed a label free nanosensitive multifractal detrended fluctuation analysis(nsMFDFA) technique in combination with multifractal analysis and nanosensitive optical coherence tomography (nsOCT). The proposed method deployed for extraction and quantification of nanosensitive multifractal parameters in mammary fat pad (MFP). RESULTS: Initially, the nsOCT approach is numerically validated on synthetic submicron axial structures. The nsOCT technique was applied to pathologically characterized MFP of murine breast tissue to extract depth-resolved nanosensitive submicron structures. Subsequently, two-dimensional MFDFA were deployed on submicron structural en face images to extract nanosensitive tissue multifractality. We found that nanosensitive multifractality increases in transition from healthy to tumor. CONCLUSIONS: This method for extraction of nanosensitive tissue multifractality promises to provide a noninvasive diagnostic tool for early disease detection and monitoring treatment response. The novel ability to delineate the dominant submicron scale nanosensitive multifractal properties may also prove useful for characterizing a wide variety of complex scattering media of non-biological origin.


Assuntos
Fractais , Neoplasias , Animais , Camundongos , Tomografia de Coerência Óptica
19.
Cancers (Basel) ; 13(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34771496

RESUMO

The current clinical practice of breast tumor classification relies on the routine immunohistochemistry-based expression analysis of hormone receptors, which is inadequate in addressing breast tumor heterogeneity and drug resistance. MicroRNA expression profiling in tumor tissue and in the circulation is an efficient alternative to intrinsic molecular subtyping that enables precise molecular classification of breast tumor variants, the prediction of tumor progression, risk stratification and also identifies critical regulators of the tumor microenvironment. This review integrates data from protein, gene and miRNA expression studies to elaborate on a unique miRNA-based 10-subtype taxonomy, which we propose as the current gold standard to allow appropriate classification and separation of breast cancer into a targetable strategy for therapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa