Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Glia ; 65(10): 1565-1589, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28618073

RESUMO

Glia constitute the majority of the cells in our nervous system, yet there are currently no drugs that target glia for the treatment of disease. Given ongoing discoveries of the many roles of glia in numerous diseases of the nervous system, this is likely to change in years to come. Here we focus on the possibility that targeting the oligodendrocyte lineage to promote regeneration of myelin (remyelination) represents a therapeutic strategy for the treatment of the demyelinating disease multiple sclerosis, MS. We discuss how hypothesis driven studies have identified multiple targets and pathways that can be manipulated to promote remyelination in vivo, and how this work has led to the first ever remyelination clinical trials. We also highlight how recent chemical discovery screens have identified a host of small molecule compounds that promote oligodendrocyte differentiation in vitro. Some of these compounds have also been shown to promote myelin regeneration in vivo, with one already being trialled in humans. Promoting oligodendrocyte differentiation and remyelination represents just one potential strategy for the treatment of MS. The pathology of MS is complex, and its complete amelioration may require targeting multiple biological processes in parallel. Therefore, we present an overview of new technologies and models for phenotypic analyses and screening that can be exploited to study complex cell-cell interactions in in vitro and in vivo systems. Such technological platforms will provide insight into fundamental mechanisms and increase capacities for drug-discovery of relevance to glia and currently intractable disorders of the CNS.


Assuntos
Descoberta de Drogas , Fatores Imunológicos/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Remielinização/efeitos dos fármacos , Animais , Humanos , Oligodendroglia/efeitos dos fármacos
2.
Nat Commun ; 15(1): 1790, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413580

RESUMO

Axon diameter influences the conduction properties of myelinated axons, both directly, and indirectly through effects on myelin. However, we have limited understanding of mechanisms controlling axon diameter growth in the central nervous system, preventing systematic dissection of how manipulating diameter affects myelination and conduction along individual axons. Here we establish zebrafish to study axon diameter. We find that importin 13b is required for axon diameter growth, but does not affect cell body size or axon length. Using neuron-specific ipo13b mutants, we assess how reduced axon diameter affects myelination and conduction, and find no changes to myelin thickness, precision of action potential propagation, or ability to sustain high frequency firing. However, increases in conduction speed that occur along single myelinated axons with development are tightly linked to their growth in diameter. This suggests that axon diameter growth is a major driver of increases in conduction speeds along myelinated axons over time.


Assuntos
Axônios , Peixe-Zebra , Animais , Axônios/fisiologia , Bainha de Mielina/fisiologia , Sistema Nervoso Central , Neurônios
3.
Nat Neurosci ; 25(4): 415-420, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165460

RESUMO

Oligodendrocytes that survive demyelination can remyelinate, including in multiple sclerosis (MS), but how they do so is unclear. In this study, using zebrafish, we found that surviving oligodendrocytes make few new sheaths and frequently mistarget new myelin to neuronal cell bodies, a pathology we also found in MS. In contrast, oligodendrocytes generated after demyelination make abundant and correctly targeted sheaths, indicating that they likely also have a better regenerative potential in MS.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Animais , Doenças Desmielinizantes/patologia , Esclerose Múltipla/patologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Regeneração , Peixe-Zebra
4.
J Vis Exp ; (177)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34866633

RESUMO

Zebrafish larvae possess a fully functional central nervous system (CNS) with a high regenerative capacity only a few days after fertilization. This makes this animal model very useful for studying spinal cord injury and regeneration. The standard protocol for inducing such lesions is to transect the dorsal part of the trunk manually. However, this technique requires extensive training and damages additional tissues. A protocol was developed for laser-induced lesions to circumvent these limitations, allowing for high reproducibility and completeness of spinal cord transection over many animals and between different sessions, even for an untrained operator. Furthermore, tissue damage is mainly limited to the spinal cord itself, reducing confounding effects from injuring different tissues, e.g., skin, muscle, and CNS. Moreover, hemi-lesions of the spinal cord are possible. Improved preservation of tissue integrity after laser injury facilitates further dissections needed for additional analyses, such as electrophysiology. Hence, this method offers precise control of the injury extent that is unachievable manually. This allows for new experimental paradigms in this powerful model in the future.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Axônios/fisiologia , Modelos Animais de Doenças , Larva , Regeneração Nervosa/fisiologia , Reprodutibilidade dos Testes , Medula Espinal/patologia , Medula Espinal/cirurgia , Regeneração da Medula Espinal/fisiologia , Peixe-Zebra
5.
Curr Biol ; 31(17): 3743-3754.e5, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34270947

RESUMO

Myelination of axons by oligodendrocytes enables fast saltatory conduction. Oligodendrocytes are responsive to neuronal activity, which has been shown to induce changes to myelin sheaths, potentially to optimize conduction and neural circuit function. However, the cellular bases of activity-regulated myelination in vivo are unclear, partly due to the difficulty of analyzing individual myelinated axons over time. Activity-regulated myelination occurs in specific neuronal subtypes and can be mediated by synaptic vesicle fusion, but several questions remain: it is unclear whether vesicular fusion occurs stochastically along axons or in discrete hotspots during myelination and whether vesicular fusion regulates myelin targeting, formation, and/or growth. It is also unclear why some neurons, but not others, exhibit activity-regulated myelination. Here, we imaged synaptic vesicle fusion in individual neurons in living zebrafish and documented robust vesicular fusion along axons during myelination. Surprisingly, we found that axonal vesicular fusion increased upon and required myelination. We found that axonal vesicular fusion was enriched in hotspots, namely the heminodal non-myelinated domains into which sheaths grew. Blocking vesicular fusion reduced the stable formation and growth of myelin sheaths, and chemogenetically stimulating neuronal activity promoted sheath growth. Finally, we observed high levels of axonal vesicular fusion only in neuronal subtypes that exhibit activity-regulated myelination. Our results identify a novel "feedforward" mechanism whereby the process of myelination promotes the neuronal activity-regulated signal, vesicular fusion that, in turn, consolidates sheath growth along specific axons selected for myelination.


Assuntos
Vesículas Sinápticas , Peixe-Zebra , Animais , Axônios/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia , Peixe-Zebra/fisiologia
6.
Curr Biol ; 31(4): 875-883.e5, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33296680

RESUMO

Drosophila provides a powerful model in which to study inflammation in vivo, and previous studies have revealed many of the key signaling events critical for recruitment of immune cells to tissue damage. In the fly, wounding stimulates the rapid production of hydrogen peroxide (H2O2).1,2 This then acts as an activation signal by triggering a signaling pathway within responding macrophages by directly activating the Src family kinase (SFK) Src42A,3 which in turn phosphorylates the damage receptor Draper. Activated Draper then guides macrophages to the wound through the detection of an as-yet unidentified chemoattractant.3-5 Similar H2O2-activated signaling pathways are also critical for leukocyte recruitment following wounding in larval zebrafish,6-9 where H2O2 activates the SFK Lyn to drive neutrophil chemotaxis. In this study, we combine proteomics, live imaging, and genetics in the fly to identify a novel regulator of inflammation in vivo; the PTP-type phosphatase Pez. Pez is expressed in macrophages and is critical for their efficient migration to wounds. Pez functions within activated macrophages downstream of damage-induced H2O2 and operates, via its band 4.1 ezrin, radixin, and moesin (FERM) domain, together with Src42A and Draper to ensure effective inflammatory cell recruitment to wounds. We show that this key role is conserved in vertebrates, because "crispant" zebrafish larvae of the Draper ortholog (MEGF10) or the Pez ortholog (PTPN21) exhibit a failure in leukocyte recruitment to wounds. This study demonstrates evolutionary conservation of inflammatory signaling and identifies MEGF10 and PTPN21 as potential therapeutic targets for the treatment of inflammatory disorders.


Assuntos
Proteínas de Drosophila , Proteínas de Membrana , Proteínas Tirosina Fosfatases não Receptoras , Peixe-Zebra , Animais , Drosophila , Peróxido de Hidrogênio , Inflamação/genética , Larva , Proteínas Tirosina Fosfatases , Proteínas Proto-Oncogênicas pp60(c-src) , Peixe-Zebra/genética
7.
J Cell Biol ; 219(7)2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32364583

RESUMO

Through a genetic screen in zebrafish, we identified a mutant with disruption to myelin in both the CNS and PNS caused by a mutation in a previously uncharacterized gene, slc12a2b, predicted to encode a Na+, K+, and Cl- (NKCC) cotransporter, NKCC1b. slc12a2b/NKCC1b mutants exhibited a severe and progressive pathology in the PNS, characterized by dysmyelination and swelling of the periaxonal space at the axon-myelin interface. Cell-type-specific loss of slc12a2b/NKCC1b in either neurons or myelinating Schwann cells recapitulated these pathologies. Given that NKCC1 is critical for ion homeostasis, we asked whether the disruption to myelinated axons in slc12a2b/NKCC1b mutants is affected by neuronal activity. Strikingly, we found that blocking neuronal activity completely prevented and could even rescue the pathology in slc12a2b/NKCC1b mutants. Together, our data indicate that NKCC1b is required to maintain neuronal activity-related solute homeostasis at the axon-myelin interface, and the integrity of myelinated axons.


Assuntos
Axônios/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Células de Schwann/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Proteínas de Peixe-Zebra/genética , Potenciais de Ação , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mutação , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Sistema Nervoso Periférico/efeitos dos fármacos , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/patologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Bloqueadores dos Canais de Sódio/toxicidade , Membro 2 da Família 12 de Carreador de Soluto/deficiência , Tetrodotoxina/toxicidade , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência
8.
Elife ; 72018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29979149

RESUMO

Myelinating oligodendrocytes are essential for central nervous system (CNS) formation and function. Their disruption is implicated in numerous neurodevelopmental, neuropsychiatric and neurodegenerative disorders. However, recent studies have indicated that oligodendrocytes may be tractable for treatment of disease. In recent years, zebrafish have become well established for the study of myelinating oligodendrocyte biology and drug discovery in vivo. Here, by automating the delivery of zebrafish larvae to a spinning disk confocal microscope, we were able to automate high-resolution imaging of myelinating oligodendrocytes in vivo. From there, we developed an image analysis pipeline that facilitated a screen of compounds with epigenetic and post-translational targets for their effects on regulating myelinating oligodendrocyte number. This screen identified novel compounds that strongly promote myelinating oligodendrocyte formation in vivo. Our imaging platform and analysis pipeline is flexible and can be employed for high-resolution imaging-based screens of broad interest using zebrafish.


Assuntos
Testes Genéticos , Bainha de Mielina/metabolismo , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Automação , Contagem de Células , Fluorescência , Ensaios de Triagem em Larga Escala , Processamento de Imagem Assistida por Computador , Larva/metabolismo , Naftalenos/farmacologia , Oligodendroglia/citologia , Pironas/farmacologia , Reprodutibilidade dos Testes , Medula Espinal/metabolismo , Imagem com Lapso de Tempo
9.
Curr Biol ; 28(8): 1296-1305.e5, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29628374

RESUMO

The correct targeting of myelin is essential for nervous system formation and function. Oligodendrocytes in the CNS myelinate some axons, but not others, and do not myelinate structures including cell bodies and dendrites [1]. Recent studies indicate that extrinsic signals, such as neuronal activity [2, 3] and cell adhesion molecules [4], can bias myelination toward some axons and away from cell bodies and dendrites, indicating that, in vivo, neuronal and axonal cues regulate myelin targeting. In vitro, however, oligodendrocytes have an intrinsic propensity to myelinate [5-7] and can promiscuously wrap inert synthetic structures resembling neuronal processes [8, 9] or cell bodies [4]. A current therapeutic goal for the treatment of demyelinating diseases is to greatly promote oligodendrogenesis [10-13]; thus, it is important to test how accurately extrinsic signals regulate the oligodendrocyte's intrinsic program of myelination in vivo. Here, we test the hypothesis that neurons regulate myelination with sufficient stringency to always ensure correct targeting. Surprisingly, however, we find that myelin targeting in vivo is not very stringent and that mistargeting occurs readily when oligodendrocyte and myelin supply exceed axonal demand. We find that myelin is mistargeted to neuronal cell bodies in zebrafish mutants with fewer axons and independently in drug-treated zebrafish with increased oligodendrogenesis. Additionally, by increasing myelin production of oligodendrocytes in zebrafish and mice, we find that excess myelin is also inappropriately targeted to cell bodies. Our results suggest that balancing oligodendrocyte-intrinsic programs of myelin supply with axonal demand is essential for correct myelin targeting in vivo and highlight potential liabilities of strongly promoting oligodendrogenesis.


Assuntos
Corpo Celular/metabolismo , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Axônios/fisiologia , Feminino , Masculino , Camundongos , Bainha de Mielina/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Neurônios/fisiologia , Oligodendroglia/metabolismo , Organogênese/fisiologia , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/metabolismo
10.
PLoS One ; 12(5): e0178058, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542521

RESUMO

Demyelination is observed in numerous diseases of the central nervous system, including multiple sclerosis (MS). However, the endogenous regenerative process of remyelination can replace myelin lost in disease, and in various animal models. Unfortunately, the process of remyelination often fails, particularly with ageing. Even when remyelination occurs, it is characterised by the regeneration of myelin sheaths that are abnormally thin and short. This imperfect remyelination is likely to have implications for the restoration of normal circuit function and possibly the optimal metabolic support of axons. Here we describe a larval zebrafish model of demyelination and remyelination. We employ a drug-inducible cell ablation system with which we can consistently ablate 2/3rds of oligodendrocytes in the larval zebrafish spinal cord. This leads to a concomitant demyelination of 2/3rds of axons in the spinal cord, and an innate immune response over the same time period. We find restoration of the normal number of oligodendrocytes and robust remyelination approximately two weeks after induction of cell ablation, whereby myelinated axon number is restored to control levels. Remarkably, we find that myelin sheaths of normal length and thickness are regenerated during this time. Interestingly, we find that axons grow significantly in caliber during this period of remyelination. This suggests the possibility that the active growth of axons may stimulate the regeneration of myelin sheaths of normal dimensions.


Assuntos
Axônios/fisiologia , Bainha de Mielina/fisiologia , Regeneração/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/ultraestrutura , Sistema Nervoso Central/fisiologia , Doenças Desmielinizantes/terapia , Modelos Animais de Doenças , Microscopia Eletrônica de Transmissão , Bainha de Mielina/ultraestrutura , Oligodendroglia/ultraestrutura , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa