Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Biophys J ; 52(4-5): 367-377, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37106255

RESUMO

Recombinant adeno-associated virus virus-derived vectors (rAAVs) are among the most used viral delivery system for in vivo gene therapies with a good safety profile. However, rAAV production methods often lead to a heterogeneous vector population, in particular with the presence of undesired empty particles. Analytical ultracentrifugation sedimentation velocity (AUC-SV) is considered as the gold analytical technique allowing the measurement of relative amounts of each vector subpopulation and components like particle aggregates, based on their sedimentation coefficients. This letter presents the principle and practice of AUC experiments for rAAVs characterization. We discuss our results in the framework of previously published works. In addition to classical detection at 260 nm, using interference optics in the ultracentrifuge can provide an independent estimate of weight percentages of the different populations of capsids, and of the genome size incorporated in rAAV particles.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Terapia Genética , Ultracentrifugação/métodos
2.
Mol Pharm ; 19(1): 235-245, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927439

RESUMO

Alterations in glycosylation cause the emergence of tumor-associated carbohydrate antigens (TACAs) during tumorigenesis. Truncation of O-glycans reveals the Thomsen nouveau (Tn) antigen, an N-acetylgalactosamine (GalNAc) frequently attached to serine or threonine amino acids, that is accessible on the surface of cancer cells but not on healthy cells. Interestingly, GalNac can be recognized by macrophage galactose lectin (MGL), a type C lectin receptor expressed in immune cells. In this study, recombinant MGL fragments were tested in vitro for their cancer cell-targeting efficiency by flow cytometry and confocal microscopy and in vivo after administration of fluorescent MGL to tumor-bearing mice. Our results demonstrate the ability of MGL to target Tn-positive human tumors without inducing toxicity. This outcome makes MGL, a fragment of a normal human protein, the first vector candidate for in vivo diagnosis and imaging of human tumors and, possibly, for therapeutic applications.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Lectinas Tipo C/metabolismo , Células A549 , Animais , Feminino , Citometria de Fluxo , Células HT29 , Humanos , Camundongos , Camundongos Nus , Microscopia Confocal , Transplante de Neoplasias , Proteínas Recombinantes , Esferoides Celulares , Ressonância de Plasmônio de Superfície
3.
Langmuir ; 37(6): 2111-2122, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33539092

RESUMO

Two new surfactants, F5OM and F5DM, were designed as partially fluorinated analogues of n-dodecyl-ß-D-maltoside (DDM). The micellization properties and the morphologies of the aggregates formed by the two surfactants in water and phosphate buffer were evaluated by NMR spectroscopy, surface tension measurement, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. As expected, the critical micellar concentration (cmc) was found to decrease with chain length of the fluorinated tail from 2.1-2.5 mM for F5OM to 0.3-0.5 mM for F5DM, and micellization was mainly entropy-driven at 25 °C. Close to their respective cmc, the micelle sizes were similar for both surfactants, that is, 7 and 13 nm for F5OM and F5DM, respectively, and both increased with concentration forming 4 nm diameter rods with maximum dimensions of 50 and 70 nm, respectively, at a surfactant concentration of ∼30 mM. The surfactants were found to readily solubilize lipid vesicles and extract membrane proteins directly from Escherichia coli membranes. They were found more efficient than the commercial fluorinated detergent F6H2OM over a broad range of concentrations (1-10 mM) and even better than DDM at low concentrations (1-5 mM). When transferred into the two new surfactants, the thermal stability of the proteins bacteriorhodopsin (bR) and FhuA was higher than in the presence of their solubilization detergents and similar to that in DDM; furthermore, bR was stable over several months. The membrane enzymes SpNOX and BmrA were not as active as in DDM micelles but similarly active as in F6OM. Together, these findings indicate both extracting and stabilizing properties of the new maltose-based fluorinated surfactants, making them promising tools in MP applications.


Assuntos
Maltose , Tensoativos , Proteínas de Membrana , Micelas , Tensão Superficial
4.
Eur Biophys J ; 50(3-4): 501-512, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33398461

RESUMO

Fep1 is an iron-responsive GATA-type transcriptional repressor present in numerous fungi. The DNA-binding domain of this protein is characterized by the presence of two zinc fingers of the Cys2-Cys2 type and a Cys-X5-Cys-X8-Cys-X2-Cys motif located between the two zinc fingers, that is involved in binding of a [2Fe-2S] cluster. In this work, biophysical characterization of the DNA-binding domain of Pichia pastoris Fep1 and of the complex of the protein with cognate DNA has been undertaken. The results obtained by analytical ultracentrifugation sedimentation velocity, small-angle X-ray scattering and differential scanning calorimetry indicate that Fep1 is a natively unstructured protein that is able to bind DNA forming 1:1 and 2:1 complexes more compact than the individual partners. Complex formation takes place independently of the presence of a stoichiometric [2Fe-2S] cluster, suggesting that the cluster may play a role in recruiting other protein(s) required for regulation of transcription in response to changes in intracellular iron levels.


Assuntos
DNA/química , Fatores de Transcrição GATA , Ferro , Saccharomycetales , Fatores de Transcrição
5.
Eur Biophys J ; 50(3-4): 313-330, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33792745

RESUMO

Biophysical quantification of protein interactions is central to unveil the molecular mechanisms of cellular processes. Researchers can choose from a wide panel of biophysical methods that quantify molecular interactions in different ways, including both classical and more novel techniques. We report the outcome of an ARBRE-MOBIEU training school held in June 2019 in Gif-sur-Yvette, France ( https://mosbio.sciencesconf.org/ ). Twenty European students benefited from a week's training with theoretical and practical sessions in six complementary approaches: (1) analytical ultracentrifugation with or without a fluorescence detector system (AUC-FDS), (2) isothermal titration calorimetry (ITC), (3) size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), (4) bio-layer interferometry (BLI), (5) microscale thermophoresis (MST) and, (6) switchSENSE. They implemented all these methods on two examples of macromolecular interactions with nanomolar affinity: first, a protein-protein interaction between an artificial alphaRep binder, and its target protein, also an alphaRep; second, a protein-DNA interaction between a DNA repair complex, Ku70/Ku80 (hereafter called Ku), and its cognate DNA ligand. We report the approaches used to analyze the two systems under study and thereby showcase application of each of the six techniques. The workshop provided students with improved understanding of the advantages and limitations of different methods, enabling future choices concerning approaches that are most relevant or informative for specific kinds of sample and interaction.


Assuntos
Substâncias Macromoleculares/análise , Calorimetria , DNA , Humanos , Ligantes , Proteínas
6.
Biophys J ; 119(3): 605-618, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32668232

RESUMO

Small angle neutron scattering (SANS) provides a method to obtain important low-resolution information for integral membrane proteins (IMPs), challenging targets for structural determination. Specific deuteration furnishes a "stealth" carrier for the solubilized IMP. We used SANS to determine a structural envelope of SpNOX, the Streptococcus pneumoniae NADPH oxidase (NOX), a prokaryotic model system for exploring structure and function of eukaryotic NOXes. SpNOX was solubilized in the detergent lauryl maltose neopentyl glycol, which provides optimal SpNOX stability and activity. Using deuterated solvent and protein, the lauryl maltose neopentyl glycol was experimentally undetected in SANS. This affords a cost-effective SANS approach for obtaining novel structural information on IMPs. Combining SANS data with molecular modeling provided a first, to our knowledge, structural characterization of an entire NOX enzyme. It revealed a distinctly less compact structure than that predicted from the docking of homologous crystal structures of the separate transmembrane and dehydrogenase domains, consistent with a flexible linker connecting the two domains.


Assuntos
NADPH Oxidases , Difração de Nêutrons , Proteínas de Membrana , Oxirredução , Espalhamento a Baixo Ângulo
7.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722514

RESUMO

C-type lectin receptor (CLR)/carbohydrate recognition occurs through low affinity interactions. Nature compensates that weakness by multivalent display of the lectin carbohydrate recognition domain (CRD) at the cell surface. Mimicking these low affinity interactions in vitro is essential to better understand CLR/glycan interactions. Here, we present a strategy to create a generic construct with a tetrameric presentation of the CRD for any CLR, termed TETRALEC. We applied our strategy to a naturally occurring tetrameric CRD, DC-SIGNR, and compared the TETRALEC ligand binding capacity by synthetic N- and O-glycans microarray using three different DC-SIGNR constructs i) its natural tetrameric counterpart, ii) the monomeric CRD and iii) a dimeric Fc-CRD fusion. DC-SIGNR TETRALEC construct showed a similar binding profile to that of its natural tetrameric counterpart. However, differences observed in recognition of low affinity ligands underlined the importance of the CRD spatial arrangement. Moreover, we further extended the applications of DC-SIGNR TETRALEC to evaluate CLR/pathogens interactions. This construct was able to recognize heat-killed Candida albicans by flow cytometry and confocal microscopy, a so far unreported specificity of DC-SIGNR. In summary, the newly developed DC-SIGNR TETRALEC tool proved to be useful to unravel novel CLR/glycan interactions, an approach which could be applied to other CLRs.


Assuntos
Candida albicans/metabolismo , Citometria de Fluxo , Fragmentos Fc das Imunoglobulinas/química , Lectinas Tipo C/química , Proteínas Recombinantes de Fusão/química , Candida albicans/citologia , Fragmentos Fc das Imunoglobulinas/genética , Lectinas Tipo C/genética , Ligantes , Proteínas Recombinantes de Fusão/genética
8.
Biochemistry ; 58(30): 3314-3324, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31264408

RESUMO

Peptidoglycan is one of the major components of the bacterial cell wall, being responsible for shape and stability. Due to its essential nature, its biosynthetic pathway is the target for major antibiotics, and proteins involved in its biosynthesis continue to be targeted for inhibitor studies. The biosynthesis of its major building block, Lipid II, is initiated in the bacterial cytoplasm with the sequential reactions catalyzed by Mur enzymes, which have been suggested to form a multiprotein complex to facilitate shuttling of the building blocks toward the inner membrane. In this work, we purified MurC, MurD, MurE, MurF, and MurG from the human pathogen Streptococcus pneumoniae and characterized their interactions using chemical cross-linking, mass spectrometry, analytical ultracentrifugation, and microscale thermophoresis. Mur ligases interact strongly as binary complexes, with interaction regions mapping mostly to loop regions. Interestingly, MurC, MurD, and MurE display 10-fold higher affinity for each other than for MurF and MurG, suggesting that Mur ligases that catalyze the initial reactions in the peptidoglycan biosynthesis pathway could form a subcomplex that could be important to facilitate Lipid II biosynthesis. The interface between Mur proteins could represent a yet unexplored target for new inhibitor studies that could lead to the development of novel antimicrobials.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Streptococcus pneumoniae/genética
9.
Chemistry ; 25(64): 14659-14668, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31469191

RESUMO

Chemical modification of pseudo-dimannoside ligands guided by fragment-based design allowed for the exploitation of an ammonium-binding region in the vicinity of the mannose-binding site of DC-SIGN, leading to the synthesis of a glycomimetic antagonist (compound 16) of unprecedented affinity and selectivity against the related lectin langerin. Here, the computational design of pseudo-dimannoside derivatives as DC-SIGN ligands, their synthesis, their evaluation as DC-SIGN selective antagonists, the biophysical characterization of the DC-SIGN/16 complex, and the structural basis for the ligand activity are presented. On the way to the characterization of this ligand, an unusual bridging interaction within the crystals shed light on the plasticity and potential secondary binding sites within the DC-SIGN carbohydrate recognition domain.

10.
Langmuir ; 35(12): 4287-4295, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30767533

RESUMO

We report herein the design and synthesis of a novel series of alkyl glycoside detergents consisting of a nonionic polar headgroup that comprises two glucose moieties in a branched arrangement (DG), onto which octane-, decane-, and dodecanethiols were grafted leading to ODG, DDG, and DDDG detergents, respectively. Micellization in aqueous solution was studied by isothermal titration calorimetry, 1H NMR spectroscopy, and surface tensiometry. Critical micellar concentration values were found to decrease by a factor of ∼10 for each pair of methylene groups added to the alkyl chain, ranging from ∼0.05 to 9 mM for DDDG and ODG, respectively. Dynamic light scattering and analytical ultracentrifugation sedimentation velocity experiments were used to investigate the size and composition of the micellar aggregates, showing that the aggregation number significantly increased from ∼40 for ODG to ∼80 for DDDG. All new compounds were able to solubilize membrane proteins (MPs) from bacterial membranes, insect cells, as well as the Madin-Darby canine kidney cells. In particular, native human adenosine receptor (A2AR) and bacterial transporter (BmrA) were solubilized efficiently. Striking thermostability improvements of +13 and +8 °C were observed when ODG and DDG were, respectively, applied to wild-type and full-length A2AR. Taken together, this novel detergent series shows promising detergent potency for solubilization and stabilization of membrane proteins (MPs) and thus makes a valuable addition to the chemical toolbox available for extracting and handling these important but challenging MP targets.


Assuntos
Detergentes/química , Glucose/química , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Hidrogenação , Tamanho da Partícula , Estabilidade Proteica , Propriedades de Superfície
11.
Methods ; 147: 84-94, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29857192

RESUMO

Fluorinated surfactants have scarcely been explored for the direct extraction of proteins from membranes because fluorination is believed to abrogate detergency. However, we have recently shown that a commercially available fluorinated surfactant readily solubilizes lipid membranes, thereby suggesting that fluorination per se does not interfere with detergent activity. In this work, we developed new fluorinated surfactants that exhibit detergency in terms of both lipid-vesicle solubilization and membrane-protein extraction. The compounds made and tested contain two glucose moieties as polar headgroup, a hydrogenated thioether linker, and a perfluorinated alkyl tail with either 4, 6, or 8 carbon atoms. The physicochemical properties of the micelles formed by the three fluorinated surfactants were evaluated by NMR spectroscopy, surface tensiometry, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. At 25 °C, micellization was mainly entropy-driven, and the CMC values were found to decrease with chain length of the fluorinated tail, whereas the aggregation number increased with chain length. Remarkably, all three surfactants were found to solubilize lipid vesicles and extract a broad range of proteins from Escherichia coli membranes. These findings demonstrate, for the first time, that nonionic fluorinated surfactants could be further exploited for the direct extraction and solubilization of membrane proteins.


Assuntos
Detergentes/farmacologia , Proteínas de Membrana/isolamento & purificação , Calorimetria , Halogenação , Proteínas de Membrana/química , Micelas , Solubilidade
12.
Proc Natl Acad Sci U S A ; 113(19): 5406-11, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114507

RESUMO

Mycoplasmas are "minimal" bacteria able to infect humans, wildlife, and a large number of economically important livestock species. Mycoplasma infections include a spectrum of clinical manifestations ranging from simple fever to fulminant inflammatory diseases with high mortality rates. These infections are mostly chronic, suggesting that mycoplasmas have developed means to evade the host immune response. Here we present and functionally characterize a two-protein system from Mycoplasma mycoides subspecies capri that is involved in the capture and cleavage of IgG. The first component, Mycoplasma Ig binding protein (MIB), is an 83-kDa protein that is able to tightly bind to the Fv region of a wide range of IgG. The second component, Mycoplasma Ig protease (MIP), is a 97-kDa serine protease that is able to cleave off the VH domain of IgG. We demonstrate that MIB is necessary for the proteolytic activity of MIP. Cleavage of IgG requires a sequential interaction of the different partners of the system: first MIB captures the IgG, and then MIP is recruited to the MIB-IgG complex, enabling protease activity. MIB and MIP are encoded by two genes organized in tandem, with homologs found in the majority of pathogenic mycoplasmas and often in multiple copies. Phylogenetic studies suggest that genes encoding the MIB-MIP system are specific to mycoplasmas and have been disseminated by horizontal gene transfer. These results highlight an original and complex system targeting the host immunoglobulins, playing a potentially key role in the immunity evasion by mycoplasmas.


Assuntos
Proteínas de Bactérias/metabolismo , Imunoglobulina G/metabolismo , Complexos Multiproteicos/metabolismo , Mycoplasma mycoides/metabolismo , Ligação Proteica
13.
Biophys J ; 114(1): 98-112, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320700

RESUMO

Moesin, a protein of the ezrin, radixin, and moesin family, which links the plasma membrane to the cytoskeleton, is involved in multiple physiological and pathological processes, including viral budding and infection. Its interaction with the plasma membrane occurs via a key phosphoinositide, the phosphatidyl(4,5)inositol-bisphosphate (PIP2), and phosphorylation of residue T558, which has been shown to contribute, in cellulo, to a conformationally open protein. We study the impact of a double phosphomimetic mutation of moesin (T235D, T558D), which mimics the phosphorylation state of the protein, on protein/PIP2/microtubule interactions. Analytical ultracentrifugation in the micromolar range showed moesin in the monomer and dimer forms, with wild-type (WT) moesin containing a slightly larger fraction (∼30%) of dimers than DD moesin (10-20%). Only DD moesin was responsive to PIP2 in its micellar form. Quantitative cosedimentation assays using large unilamellar vesicles and quartz crystal microbalance on supported lipid bilayers containing PIP2 reveal a specific cooperative interaction for DD moesin with an ability to bind two PIP2 molecules simultaneously, whereas WT moesin was able to bind only one. In addition, DD moesin could subsequently interact with microtubules, whereas WT moesin was unable to do so. Altogether, our results point to an important role of these two phosphorylation sites in the opening of moesin: since DD moesin is intrinsically in a more open conformation than WT moesin, this intermolecular interaction is reinforced by its binding to PIP2. We also highlight important differences between moesin and ezrin, which appear to be finely regulated and to exhibit distinct molecular behaviors.


Assuntos
Membranas Artificiais , Proteínas dos Microfilamentos/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Proteínas dos Microfilamentos/química , Microtúbulos/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica
15.
J Org Chem ; 81(2): 681-8, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26694765

RESUMO

Two hybrid fluorinated double-chain surfactants with a diglucosylated polar head were synthesized. The apolar domain consists of a perfluorohexyl main chain and a butyl hydrogenated branch as a side chain. They were found to self-assemble into small micelles at low critical micellar concentrations, demonstrating that the short branch increases the overall hydrophobicity while keeping the length of the apolar domain short. They were both able to keep the membrane protein bacteriorhodopsin stable, one of them for at least 3 months.


Assuntos
Bacteriorodopsinas/química , Proteínas de Membrana/química , Bacteriorodopsinas/metabolismo , Halogenação , Hidrogenação , Proteínas de Membrana/metabolismo , Estabilidade Proteica , Tensão Superficial , Tensoativos , Termodinâmica
16.
Proc Natl Acad Sci U S A ; 110(4): 1273-8, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23288897

RESUMO

The COP9 (Constitutive photomorphogenesis 9) signalosome (CSN), a large multiprotein complex that resembles the 19S lid of the 26S proteasome, plays a central role in the regulation of the E3-cullin RING ubiquitin ligases (CRLs). The catalytic activity of the CSN complex, carried by subunit 5 (CSN5/Jab1), resides in the deneddylation of the CRLs that is the hydrolysis of the cullin-neural precursor cell expressed developmentally downregulated gene 8 (Nedd8)isopeptide bond. Whereas CSN-dependent CSN5 displays isopeptidase activity, it is intrinsically inactive in other physiologically relevant forms. Here we analyze the crystal structure of CSN5 in its catalytically inactive form to illuminate the molecular basis for its activation state. We show that CSN5 presents a catalytic domain that brings essential elements to understand its activity control. Although the CSN5 active site is catalytically competent and compatible with di-isopeptide binding, the Ins-1 segment obstructs access to its substrate-binding site, and structural rearrangements are necessary for the Nedd8-binding pocket formation. Detailed study of CSN5 by molecular dynamics unveils signs of flexibility and plasticity of the Ins-1 segment. These analyses led to the identification of a molecular trigger implicated in the active/inactive switch that is sufficient to impose on CSN5 an active isopeptidase state. We show that a single mutation in the Ins-1 segment restores biologically relevant deneddylase activity. This study presents detailed insights into CSN5 regulation. Additionally, a dynamic monomer-dimer equilibrium exists both in vitro and in vivo and may be functionally relevant.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Arginina/química , Complexo do Signalossomo COP9 , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteína NEDD8 , Peptídeo Hidrolases/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Ubiquitinas/metabolismo , Zinco/metabolismo
17.
Protein Expr Purif ; 109: 70-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25676818

RESUMO

Upon binding to its bacterial host receptor, the tail tip of phage T5 perforates, by an unknown mechanism, the heavily armoured cell wall of the host. This allows the injection of phage DNA into the cytoplasm to hijack the cell machinery and enable the production of new virions. In the perspective of a structural study of the phage tail, we have systematically overproduced eight of the eleven T5 tail proteins, with or without a N- or a C-terminal His6-tag. The widely used Hi6-tag is very convenient to purify recombinant proteins using immobilised-metal affinity chromatography. The presence of a tag however is not always innocuous. We combined automated gene cloning and expression tests to rapidly identify the most promising constructs for proteins of phage T5 tail, and performed biochemical and biophysical characterisation and crystallisation screening on available proteins. Automated small-scale purification was adapted for two highly expressed proteins. We obtained structural information for three of the proteins. We showed that the presence of a His6-tag can have drastic effect on protein expression, solubility, oligomerisation propensity and crystal quality.


Assuntos
Bacteriófagos/metabolismo , Histidina/metabolismo , Oligopeptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/metabolismo , Bacteriófagos/ultraestrutura , Cromatografia em Gel , Clonagem Molecular , Cristalização , Eletroforese em Gel de Poliacrilamida , Fluorescência , Espectroscopia de Ressonância Magnética , Solubilidade , Proteínas Virais/isolamento & purificação
18.
Nucleic Acids Res ; 41(7): 4241-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23435228

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through RNA interference. Human miRNAs are generated through a series of enzymatic processing steps. The precursor miRNA (pre-miRNA) is recognized and cleaved by a complex containing Dicer and several non-catalytic accessory proteins. HIV TAR element binding protein (TRBP) is a constituent of the Dicer complex, which augments complex stability and potentially functions in substrate recognition and product transfer to the RNA-induced silencing complex. Here we have analysed the interaction between the RNA-binding region of TRBP and an oncogenic human miRNA, miR-155, at different stages in the biogenesis pathway. We show that the region of TRBP that binds immature miRNAs comprises two independent double-stranded RNA-binding domains connected by a 60-residue flexible linker. No evidence of contact between the two double-stranded RNA-binding domains was observed either in the apo- or RNA-bound state. We establish that the RNA-binding region of TRBP interacts with both pre-miR-155 and the miR-155/miR-155* duplex through the same binding surfaces and with similar affinities, and that two protein molecules can simultaneously interact with each immature miRNA. These data suggest that TRBP could play a role before and after processing of pre-miRNAs by Dicer.


Assuntos
MicroRNAs/metabolismo , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Humanos , Estrutura Terciária de Proteína , Ribonuclease III/metabolismo
19.
Biophys J ; 107(1): 185-96, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24988353

RESUMO

Probing the solution structure of membrane proteins represents a formidable challenge, particularly when using small-angle scattering. Detergent molecules often present residual scattering contributions even at their match point in small-angle neutron scattering (SANS) measurements. Here, we studied the conformation of FhaC, the outer-membrane, ß-barrel transporter of the Bordetella pertussis filamentous hemagglutinin adhesin. SANS measurements were performed on homogeneous solutions of FhaC solubilized in n-octyl-d17-ßD-glucoside and on a variant devoid of the α helix H1, which critically obstructs the FhaC pore, in two solvent conditions corresponding to the match points of the protein and the detergent, respectively. Protein-bound detergent amounted to 142 ± 10 mol/mol as determined by analytical ultracentrifugation. By using molecular modeling and starting from three distinct conformations of FhaC and its variant embedded in lipid bilayers, we generated ensembles of protein-detergent arrangement models with 120-160 detergent molecules. The scattered curves were back-calculated for each model and compared with experimental data. Good fits were obtained for relatively compact, connected detergent belts, which occasionally displayed small detergent-free patches on the outer surface of the ß barrel. The combination of SANS and modeling clearly enabled us to infer the solution structure of FhaC, with H1 inside the pore as in the crystal structure. We believe that our strategy of combining explicit atomic detergent modeling with SANS measurements has significant potential for structural studies of other detergent-solubilized membrane proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Difração de Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo
20.
J Biol Chem ; 288(42): 30763-30772, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24014030

RESUMO

Within tailed bacteriophages, interaction of the receptor-binding protein (RBP) with the target cell triggers viral DNA ejection into the host cytoplasm. In the case of phage T5, the RBP pb5 and the receptor FhuA, an outer membrane protein of Escherichia coli, have been identified. Here, we use small angle neutron scattering and electron microscopy to investigate the FhuA-pb5 complex. Specific deuteration of one of the partners allows the complete masking in small angle neutron scattering of the surfactant and unlabeled proteins when the complex is solubilized in the fluorinated surfactant F6-DigluM. Thus, individual structures within a membrane protein complex can be described. The solution structure of FhuA agrees with its crystal structure; that of pb5 shows an elongated shape. Neither displays significant conformational changes upon interaction. The mechanism of signal transduction within phage T5 thus appears different from that of phages binding cell wall saccharides, for which structural information is available.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Complexos Multiproteicos/química , Siphoviridae/química , Proteínas Estruturais Virais/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Difração de Nêutrons , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Siphoviridae/metabolismo , Tensoativos , Proteínas Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa