Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Ecol Lett ; 24(4): 648-657, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33511789

RESUMO

Rapid life-history changes caused by size-selective harvesting are often interpreted as a response to direct harvest selection against a large body size. However, similar trait changes may result from a harvest-induced relaxation of natural selection for a large body size via density-dependent selection. Here, we show evidence of such density-dependent selection favouring large-bodied individuals at high population densities, in replicated pond populations of medaka fish. Harvesting, in contrast, selected medaka directly against a large body size and, in parallel, decreased medaka population densities. Five years of harvesting were enough for harvested and unharvested medaka populations to inherit the classically predicted trait differences, whereby harvested medaka grew slower and matured earlier than unharvested medaka. We show that this life-history divergence was not driven by direct harvest selection for a smaller body size in harvested populations, but by density-dependent natural selection for a larger body size in unharvested populations.


Assuntos
Peixes , Seleção Genética , Animais , Tamanho Corporal , Humanos , Fenótipo , Densidade Demográfica
2.
BMC Evol Biol ; 19(1): 127, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31216987

RESUMO

BACKGROUND: Studying variation in life-history traits and correlated behaviours, such as boldness and foraging (i.e., pace-of-life syndrome), allows us to better understand how these traits evolve in a changing environment. In fish, it is particularly relevant studying the interplay of resource abundance and size-selection. These are two environmental stressors affecting fish in natural conditions, but also associated with human-induced environmental change. For instance, fishing, one of the most important threats for freshwater and marine populations, results in both higher mortality on large-sized fish and reduced population density. RESULTS: Medaka, Oryzias latipes, from lines selected for large or small size over ten generations, were exposed individually to high or low food availability from birth to adulthood. Maturation schedules, reproductive investment, growth, boldness and feeding were assessed to evaluate the effect of size-selection on the pace of life, and whether it differed between food contexts (high and low). Different food abundance and size-selection resulted in diverse life histories associated with different feeding and boldness behaviour, thus showing different pace-of-life-syndromes. High availability of food favoured faster growth, earlier maturation and increased shyness. Selection for small size led to slower growth in both males and females. But, the life-history trajectory to reach such growth was sex- and food-specific. Under low food conditions, females selected for small size showed earlier maturation, which led to slower adult growth and subsequent low willingness to feed, compared to females selected for large size. No line differences were found in females at high food conditions. In contrast, males exposed to selection for small size grew slower both as juvenile and adult, and were bolder under both feeding regimes. Therefore, the response to size-selection was more sensitive to food availability in females than in males. CONCLUSIONS: We showed that size-selection (over ten generations) and resource abundance (over developmental time) led to changes in life history and behaviour. However, the effect of size-selection was sex- and context-specific, calling for precaution when drawing general conclusions on the population-level effects (or lack of them) of size-selective fishing. Conservation and management plans should consider this sex- and context-specificity.


Assuntos
Oryzias/genética , Oryzias/fisiologia , Animais , Evolução Biológica , Tamanho Corporal , Conservação dos Recursos Naturais , Feminino , Masculino , Fenótipo , Reprodução , Caracteres Sexuais
3.
Oecologia ; 181(2): 519-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26910776

RESUMO

Evaluating the effects of climate variation on ecosystems is of paramount importance for our ability to forecast and mitigate the consequences of global change. However, the ways in which complex food webs respond to climate variations remain poorly understood. Here, we use long-term time series to investigate the effects of temperature variation on the intraguild-predation (IGP) system of Windermere (UK), a lake where pike (Esox lucius, top predator) feed on small-sized perch (Perca fluviatilis) but compete with large-sized perch for the same food sources. Spectral analyses of time series reveal that pike recruitment dynamics are temperature controlled. In 1976, expansion of a size-truncating perch pathogen into the lake severely impacted large perch and favoured pike as the IGP-dominant species. This pathogen-induced regime shift to a pike-dominated IGP apparently triggered a temperature-controlled trophic cascade passing through pike down to dissolved nutrients. In simple food chains, warming is predicted to strengthen top-down control by accelerating metabolic rates in ectothermic consumers, while pathogens of top consumers are predicted to dampen this top-down control. In contrast, the local IGP structure in Windermere made warming and pathogens synergistic in their top-down effects on ecosystem functioning. More generally, our results point to top predators as major mediators of community response to global change, and show that size-selective agents (e.g. pathogens, fishers or hunters) may change the topological architecture of food webs and alter whole ecosystem sensitivity to climate variation.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Clima , Esocidae , Dinâmica Populacional , Comportamento Predatório
4.
Am Nat ; 183(2): 243-56, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24464198

RESUMO

Predicted universal responses of ectotherms to climate warming include increased maximum population growth rate and changes in body size through the temperature-size rule. However, the mechanisms that would underlie these predicted responses are not clear. Many studies have focused on proximate mechanisms of physiological processes affecting individual growth. One can also consider ultimate mechanisms involving adaptive explanations by evaluating temperature effects on different vital rates across the life history and using the information in a population dynamical model. Here, we combine long-term data for a top predator in freshwater ecosystems (pike; Esox lucius) with a stochastic integral projection model to analyze concurrent effects of temperature on vital rates, body size, and population dynamics. As predicted, the net effect of warming on population growth rate (fitness) is positive, but the thermal sensitivity of this rate is highly size- and vital rate-dependent. These results are not sensitive to increasing variability in temperature. Somatic growth follows the temperature-size rule, and our results support an adaptive explanation for this response. The stable length structure of the population shifts with warming toward an increased proportion of medium-sized but a reduced proportion of small and large individuals. This study highlights how demographic approaches can help reveal complex underlying mechanisms for population responses to warming.


Assuntos
Mudança Climática , Esocidae/fisiologia , Modelos Biológicos , Animais , Tamanho Corporal , Ecossistema , Feminino , Fertilidade , Lagos , Dinâmica Populacional , Temperatura , Reino Unido
5.
Glob Chang Biol ; 19(10): 3062-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23780903

RESUMO

The unprecedented rate of global warming requires a better understanding of how ecosystems will respond. Organisms often have smaller body sizes under warmer climates (Bergmann's rule and the temperature-size rule), and body size is a major determinant of life histories, demography, population size, nutrient turnover rate, and food-web structure. Therefore, by altering body sizes in whole communities, current warming can potentially disrupt ecosystem function and services. However, the underlying drivers of warming-induced body downsizing remain far from clear. Here, we show that thermal clines in body size are predicted from universal laws of ecology and metabolism, so that size-dependent selection from competition (both intra and interspecific) and predation favors smaller individuals under warmer conditions. We validate this prediction using 4.1 × 10(6) individual body size measurements from French river fish spanning 29 years and 52 species. Our results suggest that warming-induced body downsizing is an emergent property of size-structured food webs, and highlight the need to consider trophic interactions when predicting biosphere reorganizations under global warming.


Assuntos
Tamanho Corporal , Peixes/anatomia & histologia , Modelos Biológicos , Animais , Biodiversidade , Comportamento Competitivo , Peixes/fisiologia , Cadeia Alimentar , Comportamento Predatório , Temperatura
6.
Ecol Evol ; 13(4): e9970, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021081

RESUMO

The role of postmating sexual selection as a potential reproductive barrier in speciation is not well understood. Here, we studied the effects of sperm competition and cryptic female choice as putative postmating barriers in two lamprey ecotypes with a partial reproductive isolation. The European river lamprey Lampetra fluviatilis is anadromous and parasitic of other fish species, whereas the brook lamprey Lampetra planeri is freshwater resident and nonparasitic. We measured sperm traits in both ecotypes and designed sperm competition experiments to test the occurrence of cryptic female choice. We also performed sperm competition experiments either at equal semen volume or equal sperm number to investigate the role of sperm velocity on fertilization success. We observed distinct sperm traits between ecotypes with a higher sperm concentration and a lower sperm velocity for L. planeri compared with L. fluviatilis. The outcomes of sperm competition reflected these differences in sperm traits, and there was no evidence for cryptic female choice irrespective of female ecotype. At equal semen volume, L. planeri males had a higher fertilization success than L. fluviatilis and vice versa at equal sperm number. Our results demonstrate that different sperm traits between ecotypes can influence the male reproductive success and thus gene flow between L. planeri and L. fluviatilis. However, postmating prezygotic barriers are absent and thus cannot explain the partial reproductive isolation between ecotypes.

7.
Am Nat ; 177(2): 211-23, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21460557

RESUMO

Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.


Assuntos
Peixes/anatomia & histologia , Peixes/fisiologia , Modelos Biológicos , Temperatura , Envelhecimento , Animais , Canibalismo , Comportamento Competitivo , Aquecimento Global , Densidade Demográfica , Dinâmica Populacional
8.
Proc Biol Sci ; 278(1702): 35-41, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20667871

RESUMO

Anthropogenic factors, including climate warming, are increasing the incidence and prevalence of infectious diseases worldwide. Infectious diseases caused by pathogenic parasites can have severe impacts on host survival, thereby altering the selection regime and inducing evolutionary responses in their hosts. Knowledge about such evolutionary consequences in natural populations is critical to mitigate potential ecological and economic effects. However, studies on pathogen-induced trait changes are scarce and the pace of evolutionary change is largely unknown, particularly in vertebrates. Here, we use a time series from long-term monitoring of perch to estimate temporal trends in the maturation schedule before and after a severe pathogen outbreak. We show that the disease induced a phenotypic change from a previously increasing to a decreasing size at maturation, the most important life-history transition in animals. Evolutionary rates imposed by the pathogen were high and comparable to those reported for populations exposed to intense human harvesting. Pathogens thus represent highly potent drivers of adaptive phenotypic evolution in vertebrates.


Assuntos
Evolução Biológica , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Micoses/veterinária , Percas , Fenótipo , Maturidade Sexual/fisiologia , Animais , Tamanho Corporal , Inglaterra/epidemiologia , Modelos Logísticos , Estudos Longitudinais , Micoses/epidemiologia , Fatores de Tempo
9.
Ecology ; 92(12): 2175-82, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22352155

RESUMO

Recently developed theoretical models of stage-structured consumer-resource systems have shown that stage-specific biomass overcompensation can arise in response to increased mortality rates. We parameterized a stage-structured population model to simulate the effects of increased adult mortality caused by a pathogen outbreak in the perch (Perca fluviatilis) population of Windermere (UK) in 1976. The model predicts biomass overcompensation by juveniles in response to increased adult mortality due to a shift in food-dependent growth and reproduction rates. Considering cannibalism between life stages in the model reinforces this compensatory response due to the release from predation on juveniles at high mortality rates. These model predictions are matched by our analysis of a 60-year time series of scientific monitoring of Windermere perch, which shows that the pathogen outbreak induced a strong decrease in adult biomass and a corresponding increase in juvenile biomass. Age-specific adult fecundity and size at age were higher after than before the disease outbreak, suggesting that the pathogen-induced mortality released adult perch from competition, thereby increasing somatic and reproductive growth. Higher juvenile survival after the pathogen outbreak due to a release from cannibalism likely contributed to the observed biomass overcompensation. Our findings have general implications for predicting population- and community-level responses to increased size-selective mortality caused by exploitation or disease outbreaks.


Assuntos
Biomassa , Doenças dos Peixes/mortalidade , Modelos Biológicos , Percas/crescimento & desenvolvimento , Animais , Reino Unido
10.
Proc Natl Acad Sci U S A ; 105(50): 19792-6, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19064927

RESUMO

Selection can alter predator-prey interactions. However, whether and how complex food-webs respond to selection remain largely unknown. We show in the field that antagonistic selection from predators and pathogens on prey body-size can be a primary driver of food-web functioning. In Windermere, U.K., pike (Esox lucius, the predator) selected against small perch (Perca fluviatilis, the prey), while a perch-specific pathogen selected against large perch. The strongest selective force drove perch trait change and ultimately determined the structure of trophic interactions. Before 1976, the strength of pike-induced selection overrode the strength of pathogen-induced selection and drove a change to larger, faster growing perch. Predation-driven increase in the proportion of large, infection-vulnerable perch presumably favored the pathogen since a peak in the predation pressure in 1976 coincided with pathogen expansion and a massive perch kill. After 1976, the strength of pathogen-induced selection overrode the strength of predator-induced selection and drove a rapid change to smaller, slower growing perch. These changes made perch easier prey for pike and weaker competitors against juvenile pike, ultimately increasing juvenile pike survival and total pike numbers. Therefore, although predators and pathogens exploited the same prey in Windermere, they did not operate competitively but synergistically by driving rapid prey trait change in opposite directions. Our study empirically demonstrates that a consideration of the relative strengths and directions of multiple selective pressures is needed to fully understand community functioning in nature.


Assuntos
Esocidae/fisiologia , Doenças dos Peixes , Cadeia Alimentar , Preferências Alimentares , Percas/fisiologia , Animais , Monitoramento Ambiental , Feminino , Masculino , Percas/crescimento & desenvolvimento , População
11.
R Soc Open Sci ; 8(10): 210842, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34754498

RESUMO

Size-selective mortality due to harvesting is a threat to numerous exploited species, but how it affects the ecosystem remains largely unexplored. Here, we used a pond mesocosm experiment to assess how evolutionary responses to opposite size-selective mortality interacted with the environment (fish density and light intensity used as a proxy of resource availability) to modulate fish populations, prey community composition and ecosystem functions. We used medaka (Oryzias latipes) previously selected over 10 generations for small size (harvest-like selection; small-breeder line) or large size (large-breeder line), which displayed slow somatic growth and early maturity or fast somatic growth and late maturity, respectively. Large-breeder medaka produced more juveniles, which seemed to grow faster than small-breeder ones but only under high fish density. Additionally, large-breeder medaka had an increased impact on some benthic prey, suggesting expanded diet breadth and/or enhanced foraging abilities. As a consequence, increased light stimulated benthic algae biomass only in presence of large-breeder medaka, which were presumably better at controlling benthic grazers. Aggregated effect sizes at the community and ecosystem levels revealed that the ecological effects of medaka evolution were of similar magnitude to those induced by the environment and fish introduction. These findings indicate the important environmental dependency of evolutionary response to opposite size-selective mortality on higher levels of biological organizations.

12.
Proc Biol Sci ; 277(1683): 843-51, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-19923130

RESUMO

Chronic social stress diverts energy away from growth, reproduction and immunity, and is thus a potential driver of population dynamics. However, the effects of social stress on demographic density dependence remain largely overlooked in ecological theory. Here we combine behavioural experiments, physiology and population modelling to show in a top predator (pike Esox lucius) that social stress alone may be a primary driver of demographic density dependence. Doubling pike density in experimental ponds under controlled prey availability did not significantly change prey intake by pike (i.e. did not significantly change interference or exploitative competition), but induced a neuroendocrine stress response reflecting a size-dependent dominance hierarchy, depressed pike energetic status and lowered pike body growth rate by 23 per cent. Assuming fixed size-dependent survival and fecundity functions parameterized for the Windermere (UK) pike population, stress-induced smaller body size shifts age-specific survival rates and lowers age-specific fecundity, which in Leslie matrices projects into reduced population rate of increase (lambda) by 37-56%. Our models also predict that social stress flattens elasticity profiles of lambda to age-specific survival and fecundity, thus making population persistence more dependent on old individuals. Our results suggest that accounting for non-consumptive social stress from competitors and predators is necessary to accurately understand, predict and manage food-web dynamics.


Assuntos
Esocidae/fisiologia , Modelos Biológicos , Comportamento Predatório/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Tamanho Corporal/fisiologia , Peso Corporal/fisiologia , Esocidae/sangue , Esocidae/crescimento & desenvolvimento , Feminino , Hidrocortisona/sangue , Modelos Lineares , Fígado/fisiologia , Masculino , Tamanho do Órgão/fisiologia , Crescimento Demográfico , Tiroxina/sangue , Tri-Iodotironina/sangue
13.
Conserv Physiol ; 8(1): coaa011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274061

RESUMO

Intraspecific trait variation has large effects on the ecosystem and is greatly affected by human activities. To date, most studies focused on single-trait analyses, while considering multiple traits is expected to better predict how an individual interacts with its environment. Here, we used a mesocosm experiment with fish Oryzias latipes to test whether individual growth, boldness and functional traits (feeding rate and stoichiometric traits) formed one functional pace-of-life syndrome (POLS). We then tested the effects of among-individual mean and variance of fish functional POLSs within mesocosms on invertebrate community (e.g. zoobenthos and zooplankton abundances) and ecosystem processes (e.g. ecosystem metabolism, algae stock, nutrient concentrations). Stoichiometric traits correlated with somatic growth and behaviours, forming two independent functional POLS (i.e. two major covariance axes). Mean values of the first syndrome were sex- and environment-dependent and were associated with (i) long-term (10 generations; 4 years) selection for small or large body size resulting in contrasting life histories and (ii) short-term (6 weeks) effects of experimental treatments on resource availability (through manipulation of light intensity and interspecific competition). Specifically, females and individuals from populations selected for a small body size presented fast functional POLS with faster growth rate, higher carbon body content and lower boldness. Individuals exposed to low resources (low light and high competition) displayed a slow functional POLS. Higher mesocosm mean and variance values in the second functional POLS (i.e. high feeding rate, high carbon:nitrogen body ratio, low ammonium excretion rate) were associated to decreased prey abundances, but did not affect any of the ecosystem processes. We highlighted the presence of functional multi-trait covariation in medaka, which were affected by sex, long-term selection history and short-term environmental conditions, that ultimately had cascading ecological consequences. We stressed the need for applying this approach to better predict ecosystem response to anthropogenic global changes.

14.
Sci Total Environ ; 724: 138193, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32247139

RESUMO

The determinants of intraspecific stoichiometric variation remain difficult to elucidate due to their multiple origins (e.g. genetic vs. environmental) and potential interactive effects. We evaluated whether two size-selected lines of medaka (Oryzias latipes) with contrasted life-history strategies (small- and large-breeder lines with slow growth and early maturity vs. fast growth and late maturity) differed in their organismal stoichiometry (percentage and ratios of carbon [C], nitrogen [N] and phosphorus [P]) in a mesocosm experiment. We also tested how size-selection interacted with environmental conditions (i.e. two levels of fish density and light intensity), body condition and sex. Results showed that large-breeder fish were significantly N-enriched compared to small-breeders, while the two size-selected lines did not differ in body P composition. Size-selection interacted with density - high density only affected small-breeders leading to decreasing %C and C: N - and with sex - large-breeder females had higher %C and C:N values than large-breeder males. Finally, C:P and N:P ratios increased with body condition due to decreasing %P. Overall, our results show that the ecological consequences of size-selective mortality extend to organismal stoichiometry and may, from there, change nutrient cycling and ecosystem functioning.


Assuntos
Oryzias , Animais , Carbono , Ecossistema , Feminino , Masculino , Nitrogênio , Fósforo
15.
Ecol Evol ; 10(20): 11453-11466, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144977

RESUMO

Anticipating the genetic and phenotypic changes induced by natural or artificial selection requires reliable estimates of trait evolvabilities (genetic variances and covariances). However, whether or not multivariate quantitative genetics models are able to predict precisely the evolution of traits of interest, especially fitness-related, life history traits, remains an open empirical question. Here, we assessed to what extent the response to bivariate artificial selection on both body size and maturity in the medaka Oryzias latipes, a model fish species, fits the theoretical predictions. Three lines (Large, Small, and Control lines) were differentially selected for body length at 75 days of age, conditional on maturity. As maturity and body size were phenotypically correlated, this selection procedure generated a bi-dimensional selection pattern on two life history traits. After removal of nonheritable trends and noise with a random effect ("animal") model, the observed selection response did not match the expected bidirectional response. For body size, Large and Control lines responded along selection gradients (larger body size and stasis, respectively), but, surprisingly, the Small did not evolve a smaller body length and remained identical to the Control line throughout the experiment. The magnitude of the empirical response was smaller than the theoretical prediction in both selected directions. For maturity, the response was opposite to the expectation (the Large line evolved late maturity compared to the Control line, while the Small line evolved early maturity, while the opposite pattern was predicted due to the strong positive genetic correlation between both traits). The mismatch between predicted and observed response was substantial and could not be explained by usual sources of uncertainties (including sampling effects, genetic drift, and error in G matrix estimates).

16.
Ecol Evol ; 10(19): 10571-10592, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072281

RESUMO

Anthropogenic perturbations such as harvesting often select against a large body size and are predicted to induce rapid evolution toward smaller body sizes and earlier maturation. However, body-size evolvability and, hence, adaptability to anthropogenic perturbations remain seldom evaluated in wild populations. Here, we use a laboratory experiment over 6 generations to measure the ability of wild-caught medaka fish (Oryzias latipes) to evolve in response to bidirectional size-dependent selection mimicking opposite harvest regimes. Specifically, we imposed selection against a small body size (Large line), against a large body size (Small line) or random selection (Control line), and measured correlated responses across multiple phenotypic, life-history, and endocrine traits. As expected, the Large line evolved faster somatic growth and delayed maturation, but also evolved smaller body sizes at hatch, with no change in average levels of pituitary gene expressions of luteinizing, follicle-stimulating, or growth hormones (GH). In contrast, the Small medaka line was unable to evolve smaller body sizes or earlier maturation, but evolved smaller body sizes at hatch and showed marginally significant signs of increased reproductive investment, including larger egg sizes and elevated pituitary GH production. Natural selection on medaka body size was too weak to significantly hinder the effect of artificial selection, indicating that the asymmetric body-size response to size-dependent selection reflected an asymmetry in body-size evolvability. Our results show that trait evolvability may be contingent upon the direction of selection and that a detailed knowledge of trait evolutionary potential is needed to forecast population response to anthropogenic change.

17.
Proc Biol Sci ; 276(1676): 4163-71, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19740875

RESUMO

The form of Darwinian selection has important ecological and management implications. Negative effects of harvesting are often ascribed to size truncation (i.e. strictly directional selection against large individuals) and resultant decrease in trait variability, which depresses capacity to buffer environmental change, hinders evolutionary rebound and ultimately impairs population recovery. However, the exact form of harvest-induced selection is generally unknown and the effects of harvest on trait variability remain unexplored. Here we use unique data from the Windermere (UK) long-term ecological experiment to show in a top predator (pike, Esox lucius) that the fishery does not induce size truncation but disruptive (diversifying) selection, and does not decrease but rather increases variability in pike somatic growth rate and size at age. This result is supported by complementary modelling approaches removing the effects of catch selectivity, selection prior to the catch and environmental variation. Therefore, fishing most likely increased genetic variability for somatic growth in pike and presumably favoured an observed rapid evolutionary rebound after fishery relaxation. Inference about the mechanisms through which harvesting negatively affects population numbers and recovery should systematically be based on a measure of the exact form of selection. From a management perspective, disruptive harvesting necessitates combining a preservation of large individuals with moderate exploitation rates, and thus provides a comprehensive tool for sustainable exploitation of natural resources.


Assuntos
Evolução Biológica , Esocidae/crescimento & desenvolvimento , Pesqueiros/estatística & dados numéricos , Variação Genética , Fenótipo , Seleção Genética , Animais , Tamanho Corporal , Esocidae/genética , Pesqueiros/métodos , Funções Verossimilhança , Modelos Teóricos , Dinâmica Populacional , Reino Unido
18.
Ecol Lett ; 10(6): 512-21, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17498150

RESUMO

The ability of natural selection to drive local adaptation has been appreciated ever since Darwin. Whether human impacts can impede the adaptive process has received less attention. We tested this hypothesis by quantifying natural selection and harvest selection acting on a freshwater fish (pike) over four decades. Across the time series, directional natural selection tended to favour large individuals whereas the fishery targeted large individuals. Moreover, non-linear natural selection tended to favour intermediate sized fish whereas the fishery targeted intermediate sized fish because the smallest and largest individuals were often not captured. Thus, our results unequivocally demonstrate that natural selection and fishery selection often acted in opposite directions within this natural system. Moreover, the two selective factors combined to produce reduced fitness overall and stronger stabilizing selection relative to natural selection acting alone. The long-term ramifications of such human-induced modifications to adaptive landscapes are currently unknown and certainly warrant further investigation.


Assuntos
Esocidae/genética , Seleção Genética , Animais , Esocidae/crescimento & desenvolvimento , Feminino , Pesqueiros , Humanos , Masculino
19.
Proc Natl Acad Sci U S A ; 104(40): 15799-804, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17898170

RESUMO

Selective harvest of large individuals should alter natural adaptive landscapes and drive evolution toward reduced somatic growth and increased reproductive investment. However, few studies have simultaneously considered the relative importance of artificial and natural selection in driving trait changes in wild populations. Using 50 years of individual-based data on Windermere pike (Esox lucius), we show that trait changes tracked the adaptive peak, which moved in the direction imposed by the dominating selective force. Individual lifetime somatic growth decreased at the start of the time series because harvest selection was strong and natural selection was too weak to override the strength of harvest selection. However, natural selection favoring fast somatic growth strengthened across the time series in parallel with the increase in pike abundance and, presumably, cannibalism. Harvest selection was overridden by natural selection when the fishing effort dwindled, triggering a rapid increase in pike somatic growth. The two selective forces appear to have acted in concert during only one short period of prey collapse that favored slow-growing pike. Moreover, increased somatic growth occurred concurrently with a reduction in reproductive investment in young and small female pike, indicating a tradeoff between growth and reproduction. The age-specific amplitude of this change paralleled the age-specific strength of harvest pressure, suggesting that reduced investment was also a response to increased life expectancy. This is the first study to demonstrate that a consideration of both natural selection and artificial selection is needed to fully explain time-varying trait dynamics in harvested populations.


Assuntos
Esocidae/crescimento & desenvolvimento , Seleção Genética , Animais , Clima , Conservação dos Recursos Naturais , Meio Ambiente , Esocidae/genética , Feminino , Pesqueiros , Masculino , Percas , Densidade Demográfica , Reprodução , Truta
20.
Horm Behav ; 48(1): 53-63, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15919385

RESUMO

Dispersal, one of the most important processes in population ecology, is an issue linking physiological and behavioral features. However, the endocrine control of animal dispersal remains poorly understood. Here, we tested whether and how thyroid hormones may influence dispersal in glass eels of Anguilla anguilla, by testing their influence on locomotor activity and rheotactic behavior. Glass eels were caught during their estuarine migration and treated by immersion in either a l-thyroxine (T(4)) or a thiourea (TU) solution. As measured by radioimmunoassay, T(4) and TU treatments induced, respectively, increased and decreased whole-body thyroid hormone levels relative to untreated controls. We tested a total of 960 glass eels distributed into control, and T(4) and TU treatment groups, on their swimming behavior in experimental flume tanks equipped with upstream and downstream traps that allowed us to concurrently measure both the locomotor activity and the rheotactic behavior. Compared to controls, locomotor activity significantly increased among the hyperthyroid, T(4)-treated eels, but significantly decreased among the hypothyroid, TU-treated eels. The results on rheotactic behavior suggested a more complex regulatory mechanism, since TU but not T(4) treatment significantly affected rheotactic behavior. The influence of thyroid hormones on locomotor activity suggests a central role for these hormones in the regulation of mechanisms leading to the colonization of continental habitats by glass eels. Thyroid hormones are also implicated in the control of locomotor activity in mammals and migratory behavior in birds, suggesting that these hormones represent conserved, proximate mediators of dispersal in vertebrates.


Assuntos
Anguilla/fisiologia , Migração Animal/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Glândula Tireoide/fisiologia , Tiroxina/farmacologia , Animais , Hipertireoidismo/induzido quimicamente , Hipertireoidismo/fisiopatologia , Natação/fisiologia , Tioureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa