Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
J Infect Dis ; 225(9): 1533-1544, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33534885

RESUMO

Antibody affinity maturation is a critical step in development of functional antiviral immunity; however, accurate measurement of affinity maturation of polyclonal serum antibody responses to particulate antigens such as virions is challenging. We describe a novel avidity assay employing biolayer interferometry and dengue virus-like particles. After validation using anti-dengue monoclonal antibodies, the assay was used to assess avidity of antibody responses to a tetravalent dengue vaccine candidate (TAK-003) in children, adolescents, and adults during two phase 2 clinical trials conducted in dengue-endemic regions. Vaccination increased avidity index and avidity remained high through 1 year postvaccination. Neutralizing antibody titers and avidity index did not correlate overall; however, a correlation was observed between neutralizing antibody titer and avidity index in those subjects with the highest degree of antibody affinity maturation. Therefore, vaccination with TAK-003 stimulates polyclonal affinity maturation and functional antibody responses, including neutralizing antibodies. CLINICAL TRIALS REGISTRATION: NCT01511250 and NCT02302066.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Criança , Dengue/prevenção & controle , Humanos , Vacinas Combinadas
3.
Nature ; 520(7549): 688-691, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25853476

RESUMO

The family Filoviridae contains three genera, Ebolavirus (EBOV), Marburg virus, and Cuevavirus. Some members of the EBOV genus, including Zaire ebolavirus (ZEBOV), can cause lethal haemorrhagic fever in humans. During 2014 an unprecedented ZEBOV outbreak occurred in West Africa and is still ongoing, resulting in over 10,000 deaths, and causing global concern of uncontrolled disease. To meet this challenge a rapid-acting vaccine is needed. Many vaccine approaches have shown promise in being able to protect nonhuman primates against ZEBOV. In response to the current ZEBOV outbreak several of these vaccines have been fast tracked for human use. However, it is not known whether any of these vaccines can provide protection against the new outbreak Makona strain of ZEBOV. One of these approaches is a first-generation recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing the ZEBOV glycoprotein (GP) (rVSV/ZEBOV). To address safety concerns associated with this vector, we developed two candidate, further-attenuated rVSV/ZEBOV vaccines. Both attenuated vaccines produced an approximately tenfold lower vaccine-associated viraemia compared to the first-generation vaccine and both provided complete, single-dose protection of macaques from lethal challenge with the Makona outbreak strain of ZEBOV.


Assuntos
Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Vacinas Atenuadas/imunologia , Vesiculovirus/genética , África Ocidental/epidemiologia , Animais , Anticorpos Antivirais/imunologia , República Democrática do Congo/epidemiologia , Vacinas contra Ebola/genética , Ebolavirus/classificação , Feminino , Vetores Genéticos/genética , Doença pelo Vírus Ebola/imunologia , Humanos , Imunoglobulina G/imunologia , Cinética , Macaca fascicularis , Masculino , Análise de Sobrevida , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vesiculovirus/crescimento & desenvolvimento
4.
J Infect Dis ; 221(6): 867-877, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-30783676

RESUMO

BACKGROUND: Dengue virus (DENV) can cause life-threatening disease characterized by endothelial dysfunction and vascular leakage. DENV nonstructural protein 1 (NS1) induces human endothelial hyperpermeability and vascular leak in mice, and NS1 vaccination confers antibody-mediated protective immunity. We evaluated the magnitude, cross-reactivity, and functionality of NS1-specific IgG antibody responses in sera from a phase 2 clinical trial of Takeda's live-attenuated tetravalent dengue vaccine candidate (TAK-003). METHODS: We developed an enzyme-linked immunosorbent assay to measure anti-DENV NS1 IgG in sera from DENV-naive or preimmune subjects pre- and postvaccination with TAK-003 and evaluated the functionality of this response using in vitro models of endothelial permeability. RESULTS: TAK-003 significantly increased DENV-2 NS1-specific IgG in naive individuals, which cross-reacted with DENV-1, -3, and -4 NS1 to varying extents. NS1-induced endothelial hyperpermeability was unaffected by prevaccination serum from naive subjects but was variably inhibited by serum from preimmune subjects. After TAK-003 vaccination, all samples from naive and preimmune vaccinees completely abrogated DENV-2 NS1-induced hyperpermeability and cross-inhibited hyperpermeability induced by DENV-1, -3, and -4 NS1. Inhibition of NS1-induced hyperpermeability correlated with NS1-specific IgG concentrations. Postvaccination sera also prevented NS1-induced degradation of endothelial glycocalyx components. CONCLUSION: We provide evidence for functional NS1-specific IgG responses elicited by a candidate dengue vaccine. CLINICAL TRIALS REGISTRATION: NCT01511250.


Assuntos
Vacinas contra Dengue/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/metabolismo , Proteínas não Estruturais Virais/imunologia , Adolescente , Adulto , Linhagem Celular , Criança , Pré-Escolar , Reações Cruzadas , Células Endoteliais , Humanos , Lactente , Pessoa de Meia-Idade , Vacinas Atenuadas , Adulto Jovem
5.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142131

RESUMO

Previous studies demonstrated that a single intramuscular (i.m.) dose of an attenuated recombinant vesicular stomatitis virus (rVSV) vector (VesiculoVax vector platform; rVSV-N4CT1) expressing the glycoprotein (GP) from the Mayinga strain of Zaire ebolavirus (EBOV) protected nonhuman primates (NHPs) from lethal challenge with EBOV strains Kikwit and Makona. Here, we studied the immunogenicities of an expanded range of attenuated rVSV vectors expressing filovirus GP in mice. Based on data from those studies, an optimal attenuated trivalent rVSV vector formulation was identified that included rVSV vectors expressing EBOV, Sudan ebolavirus (SUDV), and the Angola strain of Marburg marburgvirus (MARV) GPs. NHPs were vaccinated with a single dose of the trivalent formulation, followed by lethal challenge 28 days later with each of the three corresponding filoviruses. At day 14 postvaccination, a serum IgG response specific for all three GPs was detected in all the vaccinated macaques. A modest and balanced cell-mediated immune response specific for each GP was also detected in a majority of the vaccinated macaques. No matter the level of total GP-specific immune response detected postvaccination, all the vaccinated macaques were protected from disease and death following lethal challenge with each of the three filoviruses. These findings indicate that vaccination with a single dose of attenuated rVSV-N4CT1 vectors each expressing a single filovirus GP may provide protection against the filoviruses most commonly responsible for outbreaks of hemorrhagic fever in sub-Saharan Africa.IMPORTANCE The West African Ebola virus Zaire outbreak in 2013 showed that the disease was not only a regional concern, but a worldwide problem, and highlighted the need for a safe and efficacious vaccine to be administered to the populace. However, other endemic pathogens, like Ebola virus Sudan and Marburg, also pose an important health risk to the public and therefore require development of a vaccine prior to the occurrence of an outbreak. The significance of our research was the development of a blended trivalent filovirus vaccine that elicited a balanced immune response when administered as a single dose and provided complete protection against a lethal challenge with all three filovirus pathogens.


Assuntos
Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/prevenção & controle , Doença do Vírus de Marburg/prevenção & controle , Marburgvirus/metabolismo , Vesiculovirus/genética , Vacinas Virais/administração & dosagem , Animais , Anticorpos Antivirais/metabolismo , Ebolavirus/imunologia , Glicoproteínas/genética , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Imunoglobulina G/metabolismo , Injeções Intramusculares , Macaca fascicularis , Doença do Vírus de Marburg/imunologia , Marburgvirus/imunologia , Camundongos , Vacinação , Vacinas Atenuadas , Vacinas Sintéticas , Vesiculovirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Vacinas Virais/imunologia
6.
Proc Natl Acad Sci U S A ; 112(9): E992-9, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25681373

RESUMO

A guiding principle for HIV vaccine design has been that cellular and humoral immunity work together to provide the strongest degree of efficacy. However, three efficacy trials of Ad5-vectored HIV vaccines showed no protection. Transmission was increased in two of the trials, suggesting that this vaccine strategy elicited CD4+ T-cell responses that provide more targets for infection, attenuating protection or increasing transmission. The degree to which this problem extends to other HIV vaccine candidates is not known. Here, we show that a gp120-CD4 chimeric subunit protein vaccine (full-length single chain) elicits heterologous protection against simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) acquisition in three independent rhesus macaque repeated low-dose rectal challenge studies with SHIV162P3 or SIVmac251. Protection against acquisition was observed with multiple formulations and challenges. In each study, protection correlated with antibody-dependent cellular cytotoxicity specific for CD4-induced epitopes, provided that the concurrent antivaccine T-cell responses were minimal. Protection was lost in instances when T-cell responses were high or when the requisite antibody titers had declined. Our studies suggest that balance between a protective antibody response and antigen-specific T-cell activation is the critical element to vaccine-mediated protection against HIV. Achieving and sustaining such a balance, while enhancing antibody durability, is the major challenge for HIV vaccine development, regardless of the immunogen or vaccine formulation.


Assuntos
Vacinas contra a AIDS/farmacologia , Linfócitos T CD4-Positivos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , Imunidade Celular/efeitos dos fármacos , Vacinas contra a AIDS/imunologia , Animais , Antígenos CD4/genética , Antígenos CD4/imunologia , Antígenos CD4/farmacologia , Linfócitos T CD4-Positivos/patologia , Modelos Animais de Doenças , Feminino , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/farmacologia , Infecções por HIV/imunologia , Infecções por HIV/patologia , Humanos , Imunidade Humoral , Macaca mulatta , Masculino , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia
7.
J Infect Dis ; 212 Suppl 2: S443-51, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26109675

RESUMO

Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7-9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines.


Assuntos
Ebolavirus/imunologia , Vetores Genéticos/imunologia , Doença pelo Vírus Ebola/imunologia , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Vetores Genéticos/genética , Glicoproteínas/genética , Glicoproteínas/imunologia , Cobaias , Doença pelo Vírus Ebola/virologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vacinação/métodos , Estomatite Vesicular/imunologia , Vesiculovirus/imunologia , Proteínas Virais/imunologia
8.
J Virol ; 88(12): 6690-701, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696472

RESUMO

UNLABELLED: In previous work, a prototypic recombinant vesicular stomatitis virus Indiana serotype (rVSIV) vector expressing simian immunodeficiency virus (SIV) gag and human immunodeficiency virus type 1 (HIV-1) env antigens protected nonhuman primates (NHPs) from disease following challenge with an HIV-1/SIV recombinant (SHIV). However, when tested in a stringent NHP neurovirulence (NV) model, this vector was not adequately attenuated for clinical evaluation. For the work described here, the prototypic rVSIV vector was attenuated by combining specific G protein truncations with either N gene translocations or mutations (M33A and M51A) that ablate expression of subgenic M polypeptides, by incorporation of temperature-sensitive mutations in the N and L genes, and by deletion of the VSIV G gene to generate a replicon that is dependent on trans expression of G protein for in vitro propagation. When evaluated in a series of NHP NV studies, these attenuated rVSIV variants caused no clinical disease and demonstrated a very significant reduction in neuropathology compared to wild-type VSIV and the prototypic rVSIV vaccine vector. In spite of greatly increased in vivo attenuation, some of the rVSIV vectors elicited cell-mediated immune responses that were similar in magnitude to those induced by the much more virulent prototypic vector. These data demonstrate novel approaches to the rational attenuation of VSIV NV while retaining vector immunogenicity and have led to identification of an rVSIV N4CT1gag1 vaccine vector that has now successfully completed phase I clinical evaluation. IMPORTANCE: The work described in this article demonstrates a rational approach to the attenuation of vesicular stomatitis virus neurovirulence. The major attenuation strategy described here will be most likely applicable to other members of the Rhabdoviridae and possibly other families of nonsegmented negative-strand RNA viruses. These studies have also enabled the identification of an attenuated, replication-competent rVSIV vector that has successfully undergone its first clinical evaluation in humans. Therefore, these studies represent a major milestone in the development of attenuated rVSIV, and likely other vesiculoviruses, as a new vaccine platform(s) for use in humans.


Assuntos
Vacinas contra a AIDS/imunologia , Sistema Nervoso Central/virologia , Vetores Genéticos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Macaca fascicularis , Vírus da Estomatite Vesicular Indiana/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Anticorpos Antivirais/imunologia , Sistema Nervoso Central/imunologia , Modelos Animais de Doenças , Vetores Genéticos/genética , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , Humanos , Macaca fascicularis/genética , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Masculino , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
9.
JCI Insight ; 9(18)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088271

RESUMO

BACKGROUNDAn HIV-1 DNA vaccine composed of 7 highly conserved, structurally important elements (conserved elements, CE) of p24Gag was tested in a phase I randomized, double-blind clinical trial (HVTN 119, NCT03181789) in people without HIV. DNA vaccination of CE prime/CE+p55Gag boost was compared with p55Gag.METHODSTwo groups (n = 25) received 4 DNA vaccinations (CE/CE+p55Gag or p55Gag) by intramuscular injection/electroporation, including IL-12 DNA adjuvant. The placebo group (n = 6) received saline. Participants were followed for safety and tolerability. Immunogenicity was assessed for T cell and antibody responses.RESULTSBoth regimens were safe and generally well tolerated. The p24CE vaccine was immunogenic and significantly boosted by CE+p55Gag (64% CD4+, P = 0.037; 42% CD8+, P = 0.004). CE+p55Gag induced responses to 5 of 7 CE, compared with only 2 CE by p55Gag DNA, with a higher response to CE5 in 30% of individuals (P = 0.006). CE+p55Gag induced significantly higher CD4+ CE T cell breadth (0.68 vs. 0.22 CE; P = 0.029) and a strong trend for overall T cell breadth (1.14 vs. 0.52 CE; P = 0.051). Both groups developed high cellular and humoral responses. p24CE vaccine-induced CD4+ CE T cell responses correlated (P = 0.007) with p24Gag antibody responses.CONCLUSIONThe CE/CE+p55Gag DNA vaccine induced T cell responses to conserved regions in p24Gag, increasing breadth and epitope recognition throughout p55Gag compared with p55Gag DNA. Vaccines focusing immune responses by priming responses to highly conserved regions could be part of a comprehensive HIV vaccine strategy.TRIAL REGISTRATIONClinical Trials.gov NCT03181789FUNDINGHVTN, NIAID/NIH.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Vacinas de DNA , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Humanos , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , HIV-1/imunologia , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/administração & dosagem , Feminino , Adulto , Masculino , Método Duplo-Cego , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Pessoa de Meia-Idade , Adulto Jovem , Linfócitos T/imunologia , Anticorpos Anti-HIV/imunologia , Vacinação/métodos , Imunogenicidade da Vacina , Linfócitos T CD4-Positivos/imunologia
10.
Vaccine ; 40(8): 1143-1151, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35078666

RESUMO

BACKGROUND: As robust dengue-specific CD4+ and CD8+ T cell responses are essential for protective immunity, we assessed cell-mediated immune (CMI) responses to a DENV-2-based dengue tetravalent vaccine candidate (TAK-003) in adolescents living in Panama, a dengue-endemic country. METHODS: Peripheral blood mononuclear cells were collected from a subset of 67 participants ≥ 10 years old included in a phase 2 clinical trial of TAK-003 (Clinicaltrials.gov: NCT02302066). Following stimulation with dengue peptides, the frequency, magnitude, and cross-reactivity of the CD8+ and CD4+ T cell IFN-γ, TNF-α and IL-2 responses were assessed by flow cytometry. RESULTS: Intracellular cytokine staining identified NS1, NS3, and NS5 as the most common non-structural (NS) targets of the CD4+ T-cell response (IFN-γ+); NS3 and NS5 were the main NS targets of the CD8+ T cell response (IFN-γ+). Both CD4+ and CD8+ T-cell responses were multi-functional (IFN-γ + TNF-α + IL-2+) and cross-reactive against DENV-1, -3, and -4 serotypes. Similar responses were seen in all CMI assessments irrespective of participant baseline status for dengue neutralizing antibodies and T cells. CONCLUSIONS: TAK-003 elicited cross-reactive, multi-functional CD4+ and CD8+ T-cell responses, irrespective of dengue pre-exposure.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Adolescente , Anticorpos Neutralizantes , Anticorpos Antivirais , Dengue/prevenção & controle , Humanos , Imunidade Celular , Leucócitos Mononucleares , Vacinas Atenuadas , Vacinas Combinadas
11.
PLoS Negl Trop Dis ; 16(5): e0010433, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35622847

RESUMO

BACKGROUND: Marburg virus (MARV), an Ebola-like virus, remains an eminent threat to public health as demonstrated by its high associated mortality rate (23-90%) and recent emergence in West Africa for the first time. Although a recombinant vesicular stomatitis virus (rVSV)-based vaccine (Ervebo) is licensed for Ebola virus disease (EVD), no approved countermeasures exist against MARV. Results from clinical trials indicate Ervebo prevents EVD in 97.5-100% of vaccinees 10 days onwards post-immunization. METHODOLOGY/FINDINGS: Given the rapid immunogenicity of the Ervebo platform against EVD, we tested whether a similar, but highly attenuated, rVSV-based Vesiculovax vector expressing the glycoprotein (GP) of MARV (rVSV-N4CT1-MARV-GP) could provide swift protection against Marburg virus disease (MVD). Here, groups of cynomolgus monkeys were vaccinated 7, 5, or 3 days before exposure to a lethal dose of MARV (Angola variant). All subjects (100%) immunized one week prior to challenge survived; 80% and 20% of subjects survived when vaccinated 5- and 3-days pre-exposure, respectively. Lethality was associated with higher viral load and sustained innate immunity transcriptional signatures, whereas survival correlated with development of MARV GP-specific antibodies and early expression of predicted NK cell-, B-cell-, and cytotoxic T-cell-type quantities. CONCLUSIONS/SIGNIFICANCE: These results emphasize the utility of Vesiculovax vaccines for MVD outbreak management. The highly attenuated nature of rVSV-N4CT1 vaccines, which are clinically safe in humans, may be preferable to vaccines based on the same platform as Ervebo (rVSV "delta G" platform), which in some trial participants induced vaccine-related adverse events in association with viral replication including arthralgia/arthritis, dermatitis, and cutaneous vasculitis.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Vacinas Virais , Animais , Anticorpos Antivirais , Glicoproteínas , Humanos , Macaca fascicularis , Doença do Vírus de Marburg/prevenção & controle , Vacinas Atenuadas , Vesiculovirus/genética
12.
Vaccine ; 39(38): 5436-5441, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34373117

RESUMO

Auro Vaccines LLC has developed a protein vaccine to prevent disease from Nipah and Hendra virus infection that employs a recombinant soluble Hendra glycoprotein (HeV-sG) adjuvanted with aluminum phosphate. This vaccine is currently under clinical evaluation in a Phase 1 study. The Benefit-Risk Assessment of VAccines by TechnolOgy Working Group (BRAVATO; ex-V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of protein vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of such a vaccine platform. The structured and standardized assessment provided by the template may also help contribute to improved public acceptance and communication of licensed protein vaccines.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Glicoproteínas , Infecções por Henipavirus/prevenção & controle , Humanos , Medição de Risco , Vacinas Sintéticas
13.
Lancet Infect Dis ; 20(4): 455-466, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31952923

RESUMO

BACKGROUND: The safety and immunogenicity of a highly attenuated recombinant vesicular stomatitis virus (rVSV) expressing HIV-1 gag (rVSVN4CT1-HIV-1gag1) was shown in previous phase 1 clinical studies. An rVSV vector expressing Ebola virus glycoprotein (EBOV-GP) in place of HIV-1 gag (rVSVN4CT1-EBOVGP1) showed single-dose protection from lethal challenge with low passage Ebola virus in non-human primates. We aimed to evaluate the safety and immunogenicity of the rVSVN4CT1-EBOVGP1 vaccine in healthy adults. METHODS: We did a randomised double-blind, placebo-controlled, phase 1 dose-escalation study at a single clinical site (Optimal Research) in Melbourne, FL, USA. Eligible participants were healthy men and non-pregnant women aged 18-60 years, with a body-mass index (BMI) of less than 40 kg/m2, no history of filovirus infection, VSV infection, or receipt of rVSV in previous studies, and who had not visited regions where Ebola virus outbreaks have occurred. Three cohorts were enrolled to assess a low (2·5 × 104 plaque forming units [PFU]), intermediate (2 × 105 PFU), or high dose (1·8 × 106 PFU) of the vaccine. Participants within each cohort were randomly allocated (10:3) to receive vaccine or placebo by intramuscular injection in a homologous prime and boost regimen, with 4 weeks between doses. All syringes were masked with syringe sleeves; participants and study site staff were not blinded to dose level but were blinded to active vaccine and placebo. The primary outcomes were safety and tolerability; immunogenicity, assessed as GP-specific humoral immune response (at 2 weeks after each dose) and cellular immune response (at 1 and 2 weeks after each dose), was a secondary outcome. All randomised participants were included in primary and safety analyses. This trial is registered with ClinicalTrials.gov, NCT02718469. FINDINGS: Between Dec 22, 2015, and Sept 15, 2016, 39 individuals (18 [46%] men and 21 [54%] women, mean age 51 years [SD 10]) were enrolled, with ten participants receiving the vaccine and three participants receiving placebo in each of three cohorts. One participant in the intermediate dose cohort was withdrawn from the study because of a diagnosis of invasive ductal breast carcinoma 24 days after the first vaccination, which was considered unrelated to the vaccine. No severe adverse events were observed. Solicited local adverse events occurred in ten (26%) of 39 participants after the first dose and nine (24%) of 38 participants after the second dose; the events lasted 3 days or less, were predominantly injection site tenderness (17 events) and injection site pain (ten events), and were either mild (19 events) or moderate (ten events) in intensity. Systemic adverse events occurred in 13 (33%) of 39 participants after the first dose and eight (21%) of 38 participants after the second dose; the events were mild (45 events) or moderate (11 events) in severity, and the most common events were malaise or fatigue (13 events) and headache (12 events). Arthritis and maculopapular, vesicular, or purpuric rash distal to the vaccination site(s) were not reported. A GP-specific IgG response was detected in all vaccine recipients after two doses (and IgG response frequency was 100% after a single high dose), and an Ebola virus neutralising response was detected in 100% of participants in the high-dose cohort. INTERPRETATION: The rVSVN4CT1-EBOVGP1 vaccine was well tolerated at all dose levels tested and was immunogenic despite a high degree of attenuation. The combined safety and immunogenicity profile of the rVSVN4CT1-EBOVGP1 vaccine vector support phase 1-2 clinical evaluation. FUNDING: US Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense: Joint Project Manager for Chemical, Biological, Radiological and Nuclear Medical.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Imunogenicidade da Vacina , Segurança , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Vacinação , Vacinas Atenuadas/imunologia
14.
PLoS One ; 13(9): e0202753, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235286

RESUMO

BACKGROUND: The addition of plasmid cytokine adjuvants, electroporation, and live attenuated viral vectors may further optimize immune responses to DNA vaccines in heterologous prime-boost combinations. The objective of this study was to test the safety and tolerability of a novel prime-boost vaccine regimen incorporating these strategies with different doses of IL-12 plasmid DNA adjuvant. METHODS: In a phase 1 study, 88 participants received an HIV-1 multiantigen (gag/pol, env, nef/tat/vif) DNA vaccine (HIV-MAG, 3000 µg) co-administered with IL-12 plasmid DNA adjuvant at 0, 250, 1000, or 1500 µg (N = 22/group) given intramuscularly with electroporation (Ichor TriGrid™ Delivery System device) at 0, 1 and 3 months; followed by attenuated recombinant vesicular stomatitis virus, serotype Indiana, expressing HIV-1 Gag (VSV-Gag), 3.4 ⊆ 107 plaque-forming units (PFU), at 6 months; 12 others received placebo. Injections were in both deltoids at each timepoint. Participants were monitored for safety and tolerability for 15 months. RESULTS: The dose of IL-12 pDNA did not increase pain scores, reactogenicity, or adverse events with the co-administered DNA vaccine, or following the VSV-Gag boost. Injection site pain and reactogenicity were common with intramuscular injections with electroporation, but acceptable to most participants. VSV-Gag vaccine often caused systemic reactogenicity symptoms, including a viral syndrome (in 41%) of fever, chills, malaise/fatigue, myalgia, and headache; and decreased lymphocyte counts 1 day after vaccination. CONCLUSIONS: HIV-MAG DNA vaccine given by intramuscular injection with electroporation was safe at all doses of IL-12 pDNA. The VSV-Gag vaccine at this dose was associated with fever and viral symptoms in some participants, but the vaccine regimens were safe and generally well-tolerated. TRIAL REGISTRATION: Clinical Trials.gov NCT01578889.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Vetores Genéticos/administração & dosagem , Interleucina-12/genética , Vacinas Atenuadas/administração & dosagem , Vacinas de DNA/administração & dosagem , Vírus da Estomatite Vesicular Indiana/genética , Vacinas contra a AIDS/efeitos adversos , Adulto , Terapia Combinada , Método Duplo-Cego , Eletroporação , Feminino , Vetores Genéticos/efeitos adversos , HIV-1 , Voluntários Saudáveis , Humanos , Imunização Secundária , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Plasmídeos/genética , Vacinas Atenuadas/efeitos adversos , Vacinas de DNA/efeitos adversos , Adulto Jovem , Produtos do Gene gag do Vírus da Imunodeficiência Humana
15.
Sci Transl Med ; 9(419)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212716

RESUMO

Despite substantial clinical benefits, complete eradication of HIV has not been possible using antiretroviral therapy (ART) alone. Strategies that can either eliminate persistent viral reservoirs or boost host immunity to prevent rebound of virus from these reservoirs after discontinuation of ART are needed; one possibility is therapeutic vaccination. We report the results of a randomized, placebo-controlled trial of a therapeutic vaccine regimen in patients in whom ART was initiated during the early stage of HIV infection and whose immune system was anticipated to be relatively intact. The objectives of our study were to determine whether the vaccine was safe and could induce an immune response that would maintain suppression of plasma viremia after discontinuation of ART. Vaccinations were well tolerated with no serious adverse events but produced only modest augmentation of existing HIV-specific CD4+ T cell responses, with little augmentation of CD8+ T cell responses. Compared with placebo, the vaccination regimen had no significant effect on the kinetics or magnitude of viral rebound after interruption of ART and no impact on the size of the HIV reservoir in the CD4+ T cell compartment. Notably, 26% of subjects in the placebo arm exhibited sustained suppression of viremia (<400 copies/ml) after treatment interruption, a rate of spontaneous suppression higher than previously reported. Our findings regarding the degree and kinetics of plasma viral rebound after ART interruption have potentially important implications for the design of future trials testing interventions aimed at achieving ART-free control of HIV infection.


Assuntos
Vacinas contra a AIDS/uso terapêutico , Infecções por HIV/tratamento farmacológico , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Carga Viral/efeitos dos fármacos , Viremia/tratamento farmacológico , Viremia/imunologia
16.
Clin Vaccine Immunol ; 24(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28931520

RESUMO

The HIV Vaccine Trials Network (HVTN) 087 vaccine trial assessed the effect of increasing doses of pIL-12 (interleukin-12 delivered as plasmid DNA) adjuvant on the immunogenicity of an HIV-1 multiantigen (MAG) DNA vaccine delivered by electroporation and boosted with a vaccine comprising an attenuated vesicular stomatitis virus expressing HIV-1 Gag (VSV-Gag). We randomized 100 healthy adults to receive placebo or 3 mg HIV-MAG DNA vaccine (ProfectusVax HIV-1 gag/pol or ProfectusVax nef/tat/vif, env) coadministered with pIL-12 at 0, 250, 1,000, or 1,500 µg intramuscularly by electroporation at 0, 1, and 3 months followed by intramuscular inoculation with 3.4 × 107 PFU VSV-Gag vaccine at 6 months. Immune responses were assessed after the prime and boost and 6 months after the last vaccination. High-dose pIL-12 increased the magnitude of CD8+ T-cell responses postboost compared to no pIL-12 (P = 0.02), while CD4+ T-cell responses after the prime were higher in the absence of pIL-12 than with low- and medium-dose pIL-12 (P ≤ 0.05). The VSV boost increased Gag-specific CD4+ and CD8+ T-cell responses in all groups (P < 0.001 for CD4+ T cells), inducing a median of four Gag epitopes in responders. Six to 9 months after the boost, responses decreased in magnitude, but CD8+ T-cell response rates were maintained. The addition of a DNA prime dramatically improved responses to the VSV vaccine tested previously in the HVTN 090 trial, leading to broad epitope targeting and maintained CD8+ T-cell response rates at early memory. The addition of high-dose pIL-12 given with a DNA prime by electroporation and boosted with VSV-Gag increased the CD8+ T-cell responses but decreased the CD4+ responses. This approach may be advantageous in reshaping the T-cell responses to a variety of chronic infections or tumors. (This study has been registered at ClinicalTrials.gov under registration no. NCT01578889.).


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunogenicidade da Vacina , Interleucina-12/imunologia , Vacinas de DNA/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Vacinas contra a AIDS/administração & dosagem , Adjuvantes Imunológicos , Adulto , Mapeamento de Epitopos , Feminino , Vetores Genéticos , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Humanos , Imunização Secundária , Interleucina-12/genética , Masculino , Pessoa de Meia-Idade , Plasmídeos , Vacinação , Vacinas de DNA/administração & dosagem , Vírus da Estomatite Vesicular Indiana/imunologia , Adulto Jovem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
17.
J Acquir Immune Defic Syndr ; 71(2): 163-71, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26761518

RESUMO

BACKGROUND: Therapeutic vaccination is being studied in eradication and "functional cure" strategies for HIV-1. The Profectus Biosciences multiantigen (MAG) HIV-1 DNA vaccine encodes HIV-1 Gag/Pol, Nef/Tat/Vif, and Envelope, and interleukin-12 (IL-12) and is delivered by electroporation combined with intramuscular injection (IM-EP). METHODS: Sixty-two HIV-1-infected patients on antiretroviral therapy (plasma HIV-1 RNA levels ≤ 200 copies/mL; CD4(+) T-cell counts ≥ 500 cells/mm(3)) were randomly allocated 5:1 to receive vaccine or placebo. At weeks 0, 4, and 12, 4 consecutive cohorts received 3000 µg HIV MAG pDNA with 0, 50, 250, or 1000 µg of IL-12 pDNA by IM-EP. A fifth cohort received HIV MAG pDNA and 1000 µg of IL-12 pDNA by standard IM injection. RESULTS: CD4(+) T cells expressing IL-2 in response to Gag and Pol and interferon-γ responses to Gag, Pol, and Env increased from baseline to week 14 in the low-dose (50-µg) IL-12 arm vs. placebo (P < 0.05; intracellular cytokine staining). The total increase in the IL-2-expressing CD4 T-cell responses to any antigen was also higher in the low-dose IL-12 arm vs. placebo (P = 0.04). Cytokine responses by CD8 T cells to HIV antigens were not increased in any vaccine arm relative to placebo. CONCLUSIONS: HIV-1 MAG/low-dose IL-12 DNA vaccine delivered by IM-EP augmented CD4(+) but not CD8(+) T-cell responses to multiple HIV-1 antigens.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos HIV/imunologia , Infecções por HIV/tratamento farmacológico , HIV-1/imunologia , Interleucina-12/imunologia , Vacinas de DNA/imunologia , Vacinas contra a AIDS/administração & dosagem , Adolescente , Adulto , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Eletroporação , Feminino , Infecções por HIV/imunologia , HIV-1/genética , Humanos , Interferon gama/imunologia , Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , Vacinas de DNA/administração & dosagem , Adulto Jovem
18.
AIDS Res Hum Retroviruses ; 21(7): 629-43, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16060834

RESUMO

Of the various approaches being developed as prophylactic HIV vaccines, those based on a heterologous plasmid DNA prime, live vector boost vaccination regimen appear especially promising in the nonhuman primate/simian-human immunodeficiency virus (SHIV) challenge model. In this study, we sought to determine whether a series of intramuscular priming immunizations with a plasmid DNA vaccine expressing SIVgag p39, in combination with plasmid expressed rhesus IL-12, could effectively enhance the immunogenicity and postchallenge efficacy of two intranasal doses of recombinant vesicular stomatitis virus (rVSV)-based vectors expressing HIV-1 env 89.6P gp160 and SIVmac239 gag p55 in rhesus macaques. In macaques receiving the combination plasmid DNA prime, rVSV boost vaccination regimen we observed significantly increased SIVgag- specific cell-mediated and humoral immune responses and significantly lower viral loads postintravenous SHIV89.6P challenge relative to macaques receiving only the rVSV vectored immunizations. In addition, the plasmid DNA prime, rVSV boost vaccination regimen also tended to increase the preservation of peripheral blood CD4+ cells and reduce the morbidity and mortality associated with SHIV89.6P infection. An analysis of immune correlates of protection after SHIV89.6P challenge revealed that the prechallenge SHIV-specific IFN-gamma ELISpot response elicited by vaccination and the ability of the host to mount a virus-specific neutralizing antibody response postchallenge correlated with postchallenge clinical outcome. The correlation between vaccine-elicited cell-mediated immune responses and an improved clinical outcome after SHIV challenge provides strong justification for the continued development of a cytokine-enhanced plasmid DNA prime, rVSV vector boost immunization regimen for the prevention of HIV infection.


Assuntos
Vacinas contra a AIDS/imunologia , DNA/genética , Produtos do Gene gag/genética , Interleucina-12/genética , Plasmídeos , Vírus da Imunodeficiência Símia/genética , Vírus da Estomatite Vesicular Indiana/genética , Animais , Sequência de Bases , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Macaca mulatta , Testes de Neutralização , Recombinação Genética , Carga Viral
19.
PLoS One ; 10(8): e0134287, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252526

RESUMO

BACKGROUND: Strategies to enhance the immunogenicity of DNA vaccines in humans include i) co-administration of molecular adjuvants, ii) intramuscular administration followed by in vivo electroporation (IM/EP) and/or iii) boosting with a different vaccine. Combining these strategies provided protection of macaques challenged with SIV; this clinical trial was designed to mimic the vaccine regimen in the SIV study. METHODS: Seventy five healthy, HIV-seronegative adults were enrolled into a phase 1, randomized, double-blind, placebo-controlled trial. Multi-antigenic HIV (HIVMAG) plasmid DNA (pDNA) vaccine alone or co-administered with pDNA encoding human Interleukin 12 (IL-12) (GENEVAX IL-12) given by IM/EP using the TriGrid Delivery System was tested in different prime-boost regimens with recombinant Ad35 HIV vaccine given IM. RESULTS: All local reactions but one were mild or moderate. Systemic reactions and unsolicited adverse events including laboratory abnormalities did not differ between vaccine and placebo recipients. No serious adverse events (SAEs) were reported. T cell and antibody response rates after HIVMAG (x3) prime-Ad35 (x1) boost were independent of IL-12, while the magnitude of interferon gamma (IFN-γ) ELISPOT responses was highest after HIVMAG (x3) without IL-12. The quality and phenotype of T cell responses shown by intracellular cytokine staining (ICS) were similar between groups. Inhibition of HIV replication by autologous T cells was demonstrated after HIVMAG (x3) prime and was boosted after Ad35. HIV specific antibodies were detected only after Ad35 boost, although there was a priming effect with 3 doses of HIVMAG with or without IL-12. No anti-IL-12 antibodies were detected. CONCLUSION: The vaccines were safe, well tolerated and moderately immunogenic. Repeated administration IM/EP was well accepted. An adjuvant effect of co-administered plasmid IL-12 was not detected. TRIAL REGISTRATION: ClinicalTrials.gov NCT01496989.


Assuntos
Vacinas contra a AIDS/efeitos adversos , DNA Viral/efeitos adversos , DNA Viral/imunologia , Eletroporação , Infecções por HIV/imunologia , Imunização Secundária , Interleucina-12/imunologia , Vacinas contra a AIDS/imunologia , Adenoviridae/metabolismo , Adulto , Linfócitos T CD8-Positivos/imunologia , Demografia , Método Duplo-Cego , ELISPOT , Feminino , Citometria de Fluxo , Anticorpos Anti-HIV/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Imunização , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Placebos , Adulto Jovem
20.
Open Forum Infect Dis ; 2(3): ofv082, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26199949

RESUMO

Background. We report the first-in-human safety and immunogenicity evaluation of a highly attenuated, replication-competent recombinant vesicular stomatitis virus (rVSV) human immunodeficiency virus (HIV)-1 vaccine. Methods. Sixty healthy, HIV-1-uninfected adults were enrolled in a randomized, double-blinded, placebo-controlled dose-escalation study. Groups of 12 participants received rVSV HIV-1 gag vaccine at 5 dose levels (4.6 × 10(3) to 3.4 × 10(7) particle forming units) (N = 10/group) or placebo (N = 2/group), delivered intramuscularly as bilateral injections at 0 and 2 months. Safety monitoring included VSV cultures from blood, urine, saliva, and swabs of oral lesions. Vesicular stomatitis virus-neutralizing antibodies, T-cell immunogenicity, and HIV-1 specific binding antibodies were assessed. Results. Local and systemic reactogenicity symptoms were mild to moderate and increased with dose. No severe reactogenicity or product-related serious adverse events were reported, and all rVSV cultures were negative. All vaccine recipients became seropositive for VSV after 2 vaccinations. gag-specific T-cell responses were detected in 63% of participants by interferon-γ enzyme-linked immunospot at the highest dose post boost. Conclusions. An attenuated replication-competent rVSV gag vaccine has an acceptable safety profile in healthy adults. This rVSV vector is a promising new vaccine platform for the development of vaccines to combat HIV-1 and other serious human diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa