Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Small ; : e2309862, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078783

RESUMO

In this study, germanium arsenide (GeAs) is investigated as a promising nanomaterial for application in triboelectric nanogenerators and green energy harvesting. The mechanical and electrical properties of mechanically exfoliated GeAs on silica substrates are evaluated through friction force microscopy and Kelvin probe force microscopy, respectively. First, it is observed that the surface potential/work function of GeAs varied with thickness. Second, thickness-dependent friction on GeAs films is found. However, the variation of friction with GeAs thickness followed an inverse trend typically observed for most other 2D material systems: larger friction is measured on thicker GeAs films. The higher friction is attributed to the higher surface potential of thicker GeAs, resulting from the accumulation of electrons on the GeAs surface that also resulted in higher adhesion between GeAs surface and the tip. Finally, history-dependent friction is observed and resulted from a continual increase in the friction force as the surface is scanned and originated from the triboelectrification of the surface. The dynamic triboelectrification behavior of thick GeAs during the scanning process is further verified and visualized by a serial experiment, where the GeAs is tribo-electrified through scanning and gradually de-electrified/discharged upon ceasing the scan.

2.
Nanotechnology ; 30(7): 075502, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30523838

RESUMO

Friction reduction is an important issue for proper functioning of nano-/micro-electromechanical systems (N-/MEMS) due to their large surface to volume ratios and the inability of traditional liquid lubricants to effectively lubricate sliding contacts. One efficient technique to achieve substantially lowered friction at the nanoscale, as well as superlubricity in some instances, was investigated with the coupling of ultrasonic actuation of the sliding contact in an atomic force microscope (AFM). Despite the successful application of ultrasonic AFM methods in achieving mechanical property measurements and nanoscale subsurface imaging of soft and hard materials, the mechanism of friction reduction in the microscopic contact and the influence of the ultrasonic parameters on friction reduction are still elusive. In this study, the effects of excitation amplitude, applied normal force, tip radius, and humidity on friction have been investigated in detail. Ultrasonic force microscopy (UFM) results are compared against those collected with conventional contact-AFM (C-AFM) and indicate that a reduction in the adhesive interaction between the tip and sample, as well as a reduction in the shear strength can explain the mechanisms of the friction reduction in UFM method. This study opens up a new door for the control of friction and wear, which is critical for the increased lifetime of AFM probes, N-/MEMS devices and would potentially bridge the gap between nanotribology and other fields, such as nanomachining, nanolithography and biomaterials imaging.

3.
Nanotechnology ; 28(2): 025702, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27905317

RESUMO

Amplitude modulated atomic force microscopy (AM-AFM) was used to examine the influence of the size of the AFM tip apex on the measured surface topography of single highly oriented pyrolytic graphite (HOPG) atomic steps. Experimental measurements were complemented by molecular dynamics simulations of AM-AFM and the results from both were evaluated by comparison of the measured or simulated width of the topography at the step to that predicted using simple rigid-body geometry. The results showed that the step width, which is a reflection of the resolution of the measurement, increased with tip size, as expected, but also that the difference between the measured/simulated step width and the geometric calculation was tip size dependent. The simulations suggested that this may be due to the deformation of the bodies and the effect of that deformation on the interaction force and oscillation amplitude. Overall, this study showed that the resolution of AM-AFM measurements of atomic steps can be correlated to tip size and that this relationship is affected by the deformation of the system.

4.
Phys Rev Lett ; 114(14): 146102, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910138

RESUMO

Atomic force microscopy (AFM) and atomistic simulations of atomic friction with silicon oxide tips sliding on Au(111) are conducted at overlapping speeds. Experimental data unambiguously reveal a stick-slip friction plateau above a critical scanning speed, in agreement with the thermally activated Prandtl-Tomlinson (PTT) model. However, friction in experiments is larger than in simulations. PTT energetic parameters for the two are comparable, with minor differences attributable to the contact area's influence on the barrier to slip. Recognizing that the attempt frequency may be determined by thermal vibrations of the larger AFM tip mass or instrument noise fully resolves the discrepancy. Thus, atomic stick-slip is well described by the PTT model if sources of slip-assisting energy are accounted for.

5.
Nanotechnology ; 26(23): 235705, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25990713

RESUMO

Molecular dynamics (MD) simulations were used to model amplitude modulation atomic force microscopy (AM-AFM). In this novel simulation, the model AFM tip responds to both tip-substrate interactions and to a sinusoidal excitation signal. The amplitude and phase shift of the tip oscillation observed in the simulation and their variation with tip-sample distance were found to be consistent with previously reported trends from experiments and theory. These simulation results were also fit to an expression enabling estimation of the energy dissipation, which was found to be smaller than that in a corresponding experiment. The difference was analyzed in terms of the effects of tip size and substrate thickness. Development of this model is the first step toward using MD to gain insight into the atomic-scale phenomena that occur during an AM-AFM measurement.

6.
J Colloid Interface Sci ; 645: 560-569, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37163802

RESUMO

HYPOTHESIS: Despite the wide spectrum of available nanoparticles, their utilization in lubricant and grease formulations remains challenging. To enhance their performance, an improved link between the interparticle contacts, brittleness of the resulting particle network, time-dependent rheology and tribology is required. EXPERIMENTS: We systematically changed interparticle contacts and examined their effect on the colloidal stability, microstructure, rheological and tribological behavior of model greases by investigating four types of nanoclays: montmorillonite (Cloisite Na+), oleic-acid functionalized Cloisite Na+ (OA-Cloisite Na+), organomodified montmorillonite (C20A) and oleic-acid functionalized C20A (C20A-OA). FINDINGS: We observed a range of behaviors, starting from the lack of colloidal stability in greases derived with Cloisite Na+ and OA-Cloisite Na+ to semi-solid type systems with C20A and C20A-OA. Consistent with previous studies, the rheological and tribological properties of C20A systems scale with nanoclay loadings. Surprisingly, the functionalized C20A-OA system exhibited a delayed transition towards hydrodynamic lubrication, and enhanced lubrication properties, both of which were largely independent of nanoclay loadings. Coupled microstructural investigation and time-dependent rheology reveal that this behavior is governed by increasing repulsive forces, decreasing inter-particle friction between C20A-OA nanoparticles, and faster reorganization of the C20A-OA nanoparticle network under shear. Increased interparticle repulsion enables C20A-OA nanoclays to pass each other under shear and align in direction of shear, which reduces the overall viscosity, while the presence of OA on nanoclays decreases inter-particle friction and particle-steel surface friction.

7.
Nanoscale ; 15(34): 13952-13964, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37581607

RESUMO

Compared with the in situ preparation of ultrathin hydrogel coatings through successive yet tedious steps, ex situ strategies decouple the steps and greatly enhance the maneuverability and convenience of preparing hydrogel coatings. However, the difficulty in preparing sub-micron-thick coatings limits the applicability of ex situ methods in nanotechnology. Herein, we report the ex situ preparation of centimeter-scale ultrathin hydrogel coatings by applying omnidirectional stretching toward pre-gelated hydrogels with necking behaviors. This process involves blowing a bubble directly from a pre-gelated hydrogel and subsequently transferring the resulting hydrogel bubble to different substrates. The as-fabricated coatings exhibit peak-shaped thickness variations, with the thinnest part as low as ∼5 nm and the thickest part controllable from ∼200 nm to several microns. This method can be universally applied to hydrogels with necking behavior triggered by internal particles with partial hydrophobicity. Due to the overall near- or sub-micron thickness and unique thickness distribution, the coatings present concentric rings of different interference colors. With such an observable optical characteristic, the as-prepared hydrogel coatings are applied as sensors to visibly monitor humidity changes or alkaline gas through the visibly observable expansion or contraction of concentric interferometry rings, which is triggered by adsorbing/desorbing the surrounding water or alkaline molecules and the resultant swelling/deswelling of the coatings, respectively. With the universality of the method, we believe that the ex situ strategy can be used as a simple yet efficient environmental nanotechnology to fabricate various types of nanometer-thick hydrogel coatings as detectors to sensitively and visibly monitor surrounding stimuli on demand.

8.
ACS Appl Mater Interfaces ; 15(29): 34711-34725, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37433014

RESUMO

Aqueous redox flow battery systems that use a zinc negative electrode have a relatively high energy density. However, high current densities can lead to zinc dendrite growth and electrode polarization, which limit the battery's high power density and cyclability. In this study, a perforated copper foil with a high electrical conductivity was used on the negative side, combined with an electrocatalyst on the positive electrode in a zinc iodide flow battery. A significant improvement in the energy efficiency (ca. 10% vs using graphite felt on both sides) and cycling stability at a high current density of 40 mA cm-2 was observed. A long cycling stability with a high areal capacity of 222 mA h cm-2 is obtained in this study, which is the highest reported areal capacity for zinc-iodide aqueous flow batteries operating at high current density, in comparison to previous studies. Additionally, the use of a perforated copper foil anode in combination with a novel flow mode was discovered to achieve consistent cycling at exceedingly high current densities of >100 mA cm-2. In situ and ex situ characterization techniques, including in situ atomic force microscopy coupled with in situ optical microscopy and X-ray diffraction, are applied to clarify the relationship between zinc deposition morphology on the perforated copper foil and battery performance in two different flow field conditions. With a portion of the flow going through the perforations, a significantly more uniform and compact zinc deposition was observed compared to the case where all of the flow passed over the surface of the electrode. Results from modeling and simulation support the conclusion that the flow of a fraction of electrolyte through the electrode enhances mass transport, enabling a more compact deposit.

9.
J Phys Chem A ; 115(25): 6942-7, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21443236

RESUMO

Molecular processes in the frictional response of an alkanethiol monolayer, self-assembled on a Au(111) surface, are studied by means of high-resolution friction force microscopy in ultrahigh vacuum. With increasing load, three regimes are observed on defect-free domains of the monolayer: smooth sliding with negligible friction, regular molecular stick-slip motion with increasing friction, and the onset of wear in the monolayer. Molecular contrast in the lateral force is found for inequivalent molecules within the unit cell of the c(4 × 2) superstructure. Significant differences in the frictional response are found between defect-free domains and areas including a domain boundary. Friction increases by an order of magnitude on domain boundaries in connection with irregular stick-slip motion. This increased friction at domain boundaries is observed at loads below the onset of wear.

10.
Nanoscale Adv ; 2(9): 4117-4124, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132756

RESUMO

Friction in nanoscale contacts is determined by the size and structure of the interface that is hidden between the contacting bodies. One approach to investigating the origins of friction is to measure electrical conductivity as a proxy for contact size and structure. However, the relationships between contact, friction and conductivity are not fully understood, limiting the usefulness of such measurements for interpreting dynamic sliding properties. Here, atomic force microscopy (AFM) was used to simultaneously acquire lattice resolution images of the lateral force and current flow through the tip-sample contact formed between a highly oriented pyrolytic graphite (HOPG) sample and a conductive diamond AFM probe to explore the underlying mechanisms and correlations between friction and conductivity. Both current and lateral force exhibited fluctuations corresponding to the periodicity of the HOPG lattice. Unexpectedly, while lateral force increased during stick events of atomic stick-slip, the current decreased exponentially. Molecular dynamics (MD) simulations of a simple model system reproduced these trends and showed that the origin of the inverse correlation between current and lateral force during atomic stick-slip was atom-atom distance across the contact. The simulations further demonstrated transitions between crystallographic orientation during slip events were reflected in both lateral force and current. These results confirm that the correlation between conduction and atom-atom distance previously proposed for stationary contacts can be extended to sliding contacts in the stick-slip regime.

11.
Beilstein J Nanotechnol ; 11: 729-739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32461874

RESUMO

The interaction potential between two surfaces determines the adhesive and repulsive forces between them. It also determines interfacial properties, such as adhesion and friction, and is a key input into mechanics models and atomistic simulations of contacts. We have developed a novel methodology to experimentally determine interaction potential parameters, given a particular potential form, using frequency-modulated atomic force microscopy (AFM). Furthermore, this technique can be extended to the experimental verification of potential forms for any given material pair. Specifically, interaction forces are determined between an AFM tip apex and a nominally flat substrate using dynamic force spectroscopy measurements in an ultrahigh vacuum (UHV) environment. The tip geometry, which is initially unknown and potentially irregularly shaped, is determined using transmission electron microscopy (TEM) imaging. It is then used to generate theoretical interaction force-displacement relations, which are then compared to experimental results. The method is demonstrated here using a silicon AFM probe with its native oxide and a diamond sample. Assuming the 6-12 Lennard-Jones potential form, best-fit values for the work of adhesion (W adh) and range of adhesion (z 0) parameters were determined to be 80 ± 20 mJ/m2 and 0.6 ± 0.2 nm, respectively. Furthermore, the shape of the experimentally extracted force curves was shown to deviate from that calculated using the 6-12 Lennard-Jones potential, having weaker attraction at larger tip-sample separation distances and weaker repulsion at smaller tip-sample separation distances. This methodology represents the first experimental technique in which material interaction potential parameters were verified over a range of tip-sample separation distances for a tip apex of arbitrary geometry.

12.
Beilstein J Nanotechnol ; 10: 1332-1347, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355102

RESUMO

Dynamic atomic force microscopy (AFM) was employed to spatially map the elastic modulus of highly oriented pyrolytic graphite (HOPG), specifically by using force modulation microscopy (FMM) and contact resonance (CR) AFM. In both of these techniques, a variation in the amplitude signal was observed when scanning over an uncovered step edge of HOPG. In comparison, no variation in the amplitude signal was observed when scanning over a covered step on the same surface. These observations qualitatively indicate that there is a variation in the elastic modulus over uncovered steps and no variation over covered ones. The quantitative results of the elastic modulus required the use of FMM, while the CR mode better highlighted areas of reduced elastic modulus (although it was difficult to convert the data into a quantifiable modulus). In the FMM measurements, single atomic steps of graphene with uncovered step edges showed a decrease in the elastic modulus of approximately 0.5%, which is compared with no change in the elastic modulus for covered steps. The analysis of the experimental data taken under varying normal loads and with several different tips showed that the elastic modulus determination was unaffected by these parameters.

13.
J Colloid Interface Sci ; 554: 305-314, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31302368

RESUMO

HYPOTHESIS: Understanding and monitoring the film formation of interfacially formed layered films allows for the design of conductive nanocomposite films suitable for strain sensing. EXPERIMENTS: To understand the mechanism of interfacial film formation, the hexane/water interface was monitored during the evaporation process via confocal laser scanning microscopy. Scanning electron microscopy and atomic force microscopy were utilized to investigate final film morphology. Tensile testing was used to determine their mechanical properties under uniaxial strain. FINDINGS: Conductive nanocomposite films were formed at the hexane/water interface. Due to their low colloidal stability in hexane, the Vulcan carbon (VC) nanoparticles settled to the hexane/water interface prior to the onset of paraffin wax precipitation. Consequently, after the evaporation of hexane a two-layer structured film was formed. The bottom (water-facing, VC-rich) layer was conductive due to the existence of a percolated network of nanoparticle aggregates, while the top (hexane facing, paraffin-rich) layer was not conductive. The films showed high sensitivity for strains between 1% and 10%. We propose that the mechanism of strain sensing is similar to that of layer-structured sensors fabricated through embedding conductive nanofillers onto flexible polymeric substrates. The advantage of the films derived by the method proposed here is their ease of fabrication as well as their low cost.

14.
J Orthop Res ; 36(11): 2923-2931, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29978918

RESUMO

The objective of this study was to determine the effect of different sliding interface materials (counterface) on the cartilage lubricating ability of proteoglycan 4 (PRG4) and hyaluronan (HA) by measuring the kinetic coefficient of friction on cartilage-glass and cartilage-cartilage interfaces over a wide range of sliding velocities. The lubrication properties of PRG4 and HA were assessed at cartilage-glass and cartilage-cartilage interfaces using a previously described test setup with a stationary area of contact. Samples were articulated at varying effective sliding velocities of 10, 3, 1, 0.3, 0.1, and 0.01 mm/s. The response of PRG4 and HA as effective friction-reducing cartilage boundary lubricants was varied and was dependent primarily on the test counterface. At a physiological cartilage-cartilage interface both HA and PRG4 effectively reduced friction compared to PBS at slower speeds while at higher speeds PRG4 was similar to PBS, and HA similar to SF. Conversely, at a cartilage-glass interface HA demonstrated no friction reducing ability compared to PBS, and PRG4 appeared just as effective as SF. Cartilage-glass friction coefficients were also significantly greater than cartilage-cartilage friction coefficients. These results indicate the in vitro friction coefficient of putative cartilage boundary lubricants can be affected by the test counterface and suggest that use of synthetic surfaces in studying cartilage boundary lubrication may not always be appropriate for all molecules of interest. As such, care should be taken when interpreting such data, specifically when comparing to in vitro data obtained at a cartilage-cartilage interface, and especially when extrapolating to in vivo situations. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2923-2931, 2018.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Proteoglicanas/farmacologia , Viscossuplementos/farmacologia , Animais , Bovinos , Fricção , Vidro
15.
Nanoscale ; 9(6): 2330-2339, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28134377

RESUMO

Ultrasonic atomic force microscopy (AFM) and its associated derivatives are nondestructive techniques that can elucidate subsurface nanoscale structures and properties. Despite the usefulness of these techniques, the physical contrast mechanisms responsible for the reported subsurface features observed in ultrasonic AFM are not well defined. In this study, we present a comprehensive model combining ultrasonic wave scattering and tip-sample contact stiffness to better reproduce the experimentally measured phase variations over subsurface features in two model systems. These model systems represent the two extreme sample types typically imaged by ultrasonic AFM, one being a hard material and the other a soft polymeric material. The theoretical analysis presented and associated comparisons with experimental results suggest that the image contrast depends on the combination of two contrast mechanisms: the perturbation of the scattered ultrasonic waves and the local variation of the contact stiffness at the tip-sample contact. The results of this study open up a new door for the depth estimation of buried nanoscale features into hard (engineering structures) and soft (polymers and biological structures) materials, and eventually lead to non-invasive, high-resolution 3D nano-tomography by ultrasonic AFM.

16.
ACS Nano ; 10(5): 5161-8, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27110836

RESUMO

Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading.

17.
Artigo em Inglês | MEDLINE | ID: mdl-25122269

RESUMO

We have applied both the master equation method and harmonic transition state theory to interpret the velocity-dependent friction behavior observed in atomic friction experiments. To understand the discrepancy between attempt frequencies measured in atomic force microscopy experiments and those estimated by theoretical models, both thermal noise and instrumental noise are introduced into the model. It is found that the experimentally observed low attempt frequency and the transition point at low velocity regimes can be interpreted in terms of the instrumental noise inherent in atomic force microscopy. In contrast to previous models, this model also predicts (1) the existence of a two-slope curve of velocity dependence and (2) the decrease of critical velocity with temperature, which provides clues for further experimental verification of the influence of instrumental noise in friction measurements.


Assuntos
Artefatos , Fricção , Microscopia de Força Atômica/instrumentação , Modelos Teóricos , Temperatura
18.
ACS Nano ; 8(5): 5010-21, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24862034

RESUMO

Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa