Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Anim Ecol ; 91(10): 2113-2124, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35978526

RESUMO

Ecosystem functioning may directly or indirectly-via change in biodiversity-respond to land use. Dung removal is an important ecosystem function central for the decomposition of mammal faeces, including secondary seed dispersal and improved soil quality. Removal usually increases with dung beetle diversity and biomass. In forests, dung removal can vary with structural variables that are, however, often interrelated, making experiments necessary to understand the role of single variables on ecosystem functions. How gaps and deadwood, two main outcomes of forest management influence dung removal, is unknown. We tested if dung removal responds to gap creation and deadwood provisioning or if treatment effects are mediated via responses of dung beetles. We expected lower removal rates in gaps due to lower dung beetle biomass and diversity. We sampled dung beetles and measured dung removal in a highly-replicated full-factorial forest experiment established at 29 sites in three regions of Germany (treatments: Gap, Gap + Deadwood, Deadwood, Control). All gaps were experimentally created and had a diameter of around 30 m. Dung beetle diversity, biomass and dung removal were each lower in gaps than in controls. Dung removal decreased from 61.9% in controls to 48.5% in gaps, irrespective of whether or not the gap had deadwood. This treatment effect was primarily driven by dung beetle biomass but not diversity. Furthermore, dung removal was reduced to 56.9% in the deadwood treatment. Our findings are not consistent with complementarity effects of different dung beetle species linked to biodiversity-ecosystem functioning relationships that have been shown in several ecosystems. In contrast, identity effects can be pronounced: gaps reduced the abundance of a large-bodied key forest species (Anoplotrupes stercorosus), without compensatory recruitment of open land species. While gaps and deadwood are important for many forest organisms, dung beetles and dung removal respond negatively. Our results exemplify how experiments can contribute to test hypotheses on the interrelation between land use, biodiversity and ecosystem functioning.


Assuntos
Besouros , Ecossistema , Animais , Biodiversidade , Besouros/fisiologia , Fezes , Florestas , Mamíferos , Solo
2.
Ecol Lett ; 22(1): 170-180, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30463104

RESUMO

While forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa. We assessed the effects of nine forest features (representing stand structure, heterogeneity and tree composition) on thirteen above- and belowground trophic groups of plants, animals, fungi and bacteria in 150 temperate forest plots differing in their management type. Canopy cover decreased light resources, which increased community specialisation but reduced overall diversity and abundance. Features increasing resource types and diversifying microhabitats (admixing of oaks and conifers) were important and mostly affected richness. Belowground groups responded differently to those aboveground and had weaker responses to most forest features. Our results show that we need to consider forest features rather than broad management types and highlight the importance of considering several groups and community dimensions to better inform conservation.


Assuntos
Biodiversidade , Árvores , Animais , Fungos
3.
Mol Ecol ; 28(2): 348-364, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30276908

RESUMO

Root-associated mycobiomes (RAMs) link plant and soil ecological processes, thereby supporting ecosystem functions. Understanding the forces that govern the assembly of RAMs is key to sustainable ecosystem management. Here, we dissected RAMs according to functional guilds and combined phylogenetic and multivariate analyses to distinguish and quantify the forces driving RAM assembly processes. Across large biogeographic scales (>1,000 km) in temperate forests (>100 plots), RAMs were taxonomically highly distinct but composed of a stable trophic structure encompassing symbiotrophic, ectomycorrhizal (55%), saprotrophic (7%), endotrophic (3%) and pathotrophic fungi (<1%). Taxonomic community composition of RAMs is explained by abiotic factors, forest management intensity, dominant tree family (Fagaceae, Pinaceae) and root resource traits. Local RAM assemblies are phylogenetically clustered, indicating stronger habitat filtering on roots in dry, acid soils and in conifer stands than in other forest types. The local assembly of ectomycorrhizal communities is driven by forest management intensity. At larger scales, root resource traits and soil pH shift the assembly process of ectomycorrhizal fungi from deterministic to neutral. Neutral or weak deterministic assembly processes are prevalent in saprotrophic and endophytic guilds. The remarkable consistency of the trophic composition of the RAMs suggests that temperate forests attract fungal assemblages that afford functional resilience under the current range of climatic and edaphic conditions. At local scales, the filtering processes that structure symbiotrophic assemblies can be influenced by forest management and tree selection, but at larger scales, environmental cues and host resource traits are the most prevalent forces.


Assuntos
Ecossistema , Micorrizas/genética , Raízes de Plantas/microbiologia , Microbiologia do Solo , Biodiversidade , Fagaceae/microbiologia , Florestas , Micobioma/genética , Micorrizas/classificação , Pinaceae/microbiologia
4.
Sensors (Basel) ; 19(7)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970553

RESUMO

Understory vegetation influences several ecosystem services and functions of European beech (Fagus sylvatica L.) forests. Despite this knowledge on the importance of understory vegetation, it is still difficult to measure its three-dimensional characteristics in a quantitative manner. With the recent advancements in terrestrial laser scanning (TLS), we now have the means to analyze detailed spatial patterns of forests. Here, we present a new measure to quantify understory complexity. We tested the approach for different management types, ranging from traditionally and alternatively managed forests and national parks in Germany to primary forests of Eastern Europe and the Ukraine, as well as on an inventory site with more detailed understory reference data. The understory complexity index (UCI) was derived from point clouds from single scans and tested for its relationship with forest management and conventional inventory data. Our results show that advanced tree regeneration is a strong driver of the UCI. Furthermore, the newly developed index successfully measured understory complexity of differently managed beech stands and was able to distinguish scanning positions located on and away from skid-trails in managed stands. The approach enables a deeper understanding of the complexity of understory structures of forests and their drivers and dependents.


Assuntos
Ecossistema , Fagus/fisiologia , Florestas , Árvores/fisiologia , Europa (Continente) , Alemanha , Humanos , Folhas de Planta/fisiologia
5.
Front Plant Sci ; 12: 635440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643364

RESUMO

Automated species classification from 3D point clouds is still a challenge. It is, however, an important task for laser scanning-based forest inventory, ecosystem models, and to support forest management. Here, we tested the performance of an image classification approach based on convolutional neural networks (CNNs) with the aim to classify 3D point clouds of seven tree species based on 2D representation in a computationally efficient way. We were particularly interested in how the approach would perform with artificially increased training data size based on image augmentation techniques. Our approach yielded a high classification accuracy (86%) and the confusion matrix revealed that despite rather small sample sizes of the training data for some tree species, classification accuracy was high. We could partly relate this to the successful application of the image augmentation technique, improving our result by 6% in total and 13, 14, and 24% for ash, oak and pine, respectively. The introduced approach is hence not only applicable to small-sized datasets, it is also computationally effective since it relies on 2D instead of 3D data to be processed in the CNN. Our approach was faster and more accurate when compared to the point cloud-based "PointNet" approach.

6.
Data Brief ; 39: 107615, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34877382

RESUMO

Microclimate and Land Surface Temperature (LST) are important analytical variables used to understand complex oil palm agroforestry systems and their effects on biodiversity and ecosystem functions. In order to examine experimental effects of tree species richness (0, 1, 2, 3 or 6), plot size (25 m2, 100 m2, 400 m2, 1600 m2) and stand structural complexity on microclimate and Land Surface Temperature, related data were collected following a strict design. The experiment was carried out in the Jambi province, in Sumatra (Indonesia), as part of the collaborative project EFForTS [Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems]. Microclimate data collected using miniaturized data loggers combined with drone-based thermal data were considered within an oil palm plantation enriched with six target tree species. The timeframe considered for data analysis was 20th September 2017 to 26th September 2017. The experiment data can be used for comparison with data from conventional oil palm agroforestry systems in the tropics. They can more specifically be used as reference to assess microclimate and Land Surface Temperature patterns within similar agroforestry systems.

7.
Nat Commun ; 12(1): 519, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483481

RESUMO

The complexity of forest structures plays a crucial role in regulating forest ecosystem functions and strongly influences biodiversity. Yet, knowledge of the global patterns and determinants of forest structural complexity remains scarce. Using a stand structural complexity index based on terrestrial laser scanning, we quantify the structural complexity of boreal, temperate, subtropical and tropical primary forests. We find that the global variation of forest structural complexity is largely explained by annual precipitation and precipitation seasonality (R² = 0.89). Using the structural complexity of primary forests as benchmark, we model the potential structural complexity across biomes and present a global map of the potential structural complexity of the earth´s forest ecoregions. Our analyses reveal distinct latitudinal patterns of forest structure and show that hotspots of high structural complexity coincide with hotspots of plant diversity. Considering the mechanistic underpinnings of forest structural complexity, our results suggest spatially contrasting changes of forest structure with climate change within and across biomes.


Assuntos
Mudança Climática , Clima , Ecossistema , Florestas , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Geografia , Modelos Teóricos , Chuva , Estações do Ano , Árvores/classificação
8.
Ecol Evol ; 9(12): 7134-7142, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31380038

RESUMO

Aboveground tree architecture is neither fully deterministic nor random. It is likely the result of mechanisms that balance static requirements and light-capturing efficiency. Here, we used terrestrial laser scanning data to investigate the relationship between tree architecture, here addressed using the box-dimension (D b), and the architectural benefit-to-cost ratio, the light availability, and the growth of trees. We detected a clear relationship between D b and the benefit-to-cost ratio for the tested three temperate forest tree species (Fagus sylvatica L., Fraxinus excelsior L., and Acer pseudoplatanus L.). In addition, we could also show that D b is positively related to the growth performance of several tropical tree species. Finally, we observed a negative relationship between the strength of competition enforced on red oak (Quercus rubra L.) trees and their D b. We therefore argue that D b is a meaningful and integrative measure that describes the structural complexity of the aboveground compartments of a plant as well as its relation to structural efficiency (benefit-to-cost ratio), productivity, and growing conditions (competition or availability of light).

9.
Nat Commun ; 9(1): 4839, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446752

RESUMO

Trade-offs and synergies in the supply of forest ecosystem services are common but the drivers of these relationships are poorly understood. To guide management that seeks to promote multiple services, we investigated the relationships between 12 stand-level forest attributes, including structure, composition, heterogeneity and plant diversity, plus 4 environmental factors, and proxies for 14 ecosystem services in 150 temperate forest plots. Our results show that forest attributes are the best predictors of most ecosystem services and are also good predictors of several synergies and trade-offs between services. Environmental factors also play an important role, mostly in combination with forest attributes. Our study suggests that managing forests to increase structural heterogeneity, maintain large trees, and canopy gaps would promote the supply of multiple ecosystem services. These results highlight the potential for forest management to encourage multifunctional forests and suggest that a coordinated landscape-scale strategy could help to mitigate trade-offs in human-dominated landscapes.


Assuntos
Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Florestas , Árvores/fisiologia , Ecossistema , Europa (Continente) , Agricultura Florestal/tendências , Humanos
10.
Front Plant Sci ; 7: 1538, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27799935

RESUMO

Tropical biodiversity is threatened by the expansion of oil-palm plantations. Reduced-impact farming systems such as agroforests, have been proposed to increase biodiversity and ecosystem functioning. In regions where oil-palm plantations already dominate the landscape, this increase can only be achieved through systematic ecological restoration. However, our knowledge about the underlying ecological and socio-economic processes, constraints, and trade-offs of ecological restoration in oil-palm landscapes is very limited. To bridge this gap, we established a long-term biodiversity enrichment experiment. We established experimental tree islands in a conventional oil-palm plantation and systematically varied plot size, tree diversity, and tree species composition. Here, we describe the rationale and the design of the experiment, the ecosystem variables (soil, topography, canopy openness) and biotic characteristics (associated vegetation, invertebrates, birds) of the experimental site prior to the establishment of the experiment, and initial experimental effects on the fauna. Already one year after establishment of the experiment, tree plantings had an overall positive effect on the bird and invertebrate communities at the plantation scale. The diversity and abundance of invertebrates was positively affected by the size of the tree islands. Based on these results, we expect a further increase of biodiversity and associated ecological functions in the future. The long-term interdisciplinary monitoring of ecosystem variables, flora, fauna, and socio-economic aspects will allow us to evaluate the suitability of tree islands as a restoration measure. Thereof, guidelines for ecologically improved and socio-economically viable restoration and management concepts could be developed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa