Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 23(12): 4221-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22198147

RESUMO

Imprinting describes the differential expression of alleles based on their parent of origin. Deep sequencing of RNAs from maize (Zea mays) endosperm and embryo tissue 14 d after pollination was used to identify imprinted genes among a set of ~12,000 genes that were expressed and contained sequence polymorphisms between the B73 and Mo17 genotypes. The analysis of parent-of-origin patterns of expression resulted in the identification of 100 putative imprinted genes in maize endosperm, including 54 maternally expressed genes (MEGs) and 46 paternally expressed genes (PEGs). Three of these genes have been previously identified as imprinted, while the remaining 97 genes represent novel imprinted maize genes. A genome-wide analysis of DNA methylation identified regions with reduced endosperm DNA methylation in, or near, 19 of the 100 imprinted genes. The reduced levels of DNA methylation in endosperm are caused by hypomethylation of the maternal allele for both MEGs and PEGs in all cases tested. Many of the imprinted genes with reduced DNA methylation levels also show endosperm-specific expression patterns. The imprinted maize genes were compared with imprinted genes identified in genome-wide screens of rice (Oryza sativa) and Arabidopsis thaliana, and at least 10 examples of conserved imprinting between maize and each of the other species were identified.


Assuntos
Metilação de DNA , Endosperma/genética , Impressão Genômica , Zea mays/genética , Alelos , Arabidopsis/química , Arabidopsis/genética , Cromossomos de Plantas/química , Cromossomos de Plantas/genética , Sequência Conservada , Endosperma/química , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Loci Gênicos , Padrões de Herança , Oryza/química , Oryza/genética , Polinização , Polimorfismo Genético , Análise de Sequência de RNA , Zea mays/química
2.
PLoS Genet ; 7(11): e1002372, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22125494

RESUMO

Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation.


Assuntos
Citosina/metabolismo , Metilação de DNA/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Zea mays/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Genoma de Planta , Genótipo , Endogamia , Análise de Sequência com Séries de Oligonucleotídeos , População
3.
Genetics ; 211(1): 317-331, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446522

RESUMO

The development of model systems requires a detailed assessment of standing genetic variation across natural populations. The Brachypodium species complex has been promoted as a plant model for grass genomics with translation to small grain and biomass crops. To capture the genetic diversity within this species complex, thousands of Brachypodium accessions from around the globe were collected and genotyped by sequencing. Overall, 1897 samples were classified into two diploid or allopolyploid species, and then further grouped into distinct inbred genotypes. A core set of diverse B. distachyon diploid lines was selected for whole genome sequencing and high resolution phenotyping. Genome-wide association studies across simulated seasonal environments was used to identify candidate genes and pathways tied to key life history and agronomic traits under current and future climatic conditions. A total of 8, 22, and 47 QTL were identified for flowering time, early vigor, and energy traits, respectively. The results highlight the genomic structure of the Brachypodium species complex, and the diploid lines provided a resource that allows complex trait dissection within this grass model species.


Assuntos
Aclimatação , Brachypodium/genética , Estudo de Associação Genômica Ampla/métodos , Características de História de Vida , Melhoramento Vegetal/métodos , Polimorfismo Genético , Genoma de Planta , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa