RESUMO
Disparities in cancer diagnosis, treatment, and outcomes based on self-identified race and ethnicity (SIRE) are well documented, yet these variables have historically been excluded from clinical research. Without SIRE, genetic ancestry can be inferred using single-nucleotide polymorphisms (SNPs) detected from tumor DNA using comprehensive genomic profiling (CGP). However, factors inherent to CGP of tumor DNA increase the difficulty of identifying ancestry-informative SNPs, and current workflows for inferring genetic ancestry from CGP need improvements in key areas of the ancestry inference process. This study used genomic data from 4274 diverse reference subjects and CGP data from 491 patients with solid tumors and SIRE to develop and validate a workflow to obtain accurate genetically inferred ancestry (GIA) from CGP sequencing results. We use consensus-based classification to derive confident ancestral inferences from an expanded reference dataset covering eight world populations (African, Admixed American, Central Asian/Siberian, European, East Asian, Middle Eastern, Oceania, South Asian). Our GIA calls were highly concordant with SIRE (95%) and aligned well with reference populations of inferred ancestries. Further, our workflow could expand on SIRE by (i) detecting the ancestry of patients that usually lack appropriate racial categories, (ii) determining what patients have mixed ancestry, and (iii) resolving ancestries of patients in heterogeneous racial categories and who had missing SIRE. Accurate GIA provides needed information to enable ancestry-aware biomarker research, ensure the inclusion of underrepresented groups in clinical research, and increase the diverse representation of patient populations eligible for precision medicine therapies and trials.
Assuntos
Genômica , Neoplasias , Polimorfismo de Nucleotídeo Único , Fluxo de Trabalho , Humanos , Neoplasias/genética , Genômica/métodos , ConsensoRESUMO
BACKGROUND: Cancer-testis antigens (CTAs) are tumor antigens that are normally expressed in the testes but are aberrantly expressed in several cancers. CTA overexpression drives the metastasis and progression of lung cancer, and is associated with poor prognosis. To improve lung cancer diagnosis, prognostic prediction, and drug discovery, robust CTA identification and quantitation is needed. In this study, we examined and quantified the co-expression of CTAs in lung cancer to derive cancer testis antigen burden (CTAB), a novel biomarker of immunotherapy response. METHODS: Formalin fixed paraffin embedded (FFPE) tumor samples in discovery cohort (n = 5250) and immunotherapy and combination therapy treated non-small cell lung cancer (NSCLC) retrospective (n = 250) cohorts were tested by comprehensive genomic and immune profiling (CGIP), including tumor mutational burden (TMB) and the mRNA expression of 17 CTAs. PD-L1 expression was evaluated by IHC. CTA expression was summed to derive the CTAB score. The median CTAB score for the discovery cohort of 170 was applied to the retrospective cohort as cutoff for CTAB "high" and "low". Biomarker and gene expression correlation was measured by Spearman correlation. Kaplan-Meier survival analyses were used to detect overall survival (OS) differences, and objective response rate (ORR) based on RECIST criteria was compared using Fisher's exact test. RESULTS: The CTAs were highly co-expressed (p < 0.05) in the discovery cohort. There was no correlation between CTAB and PD-L1 expression (R = 0.011, p = 0.45) but some correlation with TMB (R = 0.11, p = 9.2 × 10-14). Kaplan-Meier survival analysis of the immunotherapy-treated NSCLC cohort revealed better OS for the pembrolizumab monotherapy treated patients with high CTAB (p = 0.027). The combination group demonstrated improved OS compared to pembrolizumab monotherapy group (p = 0.04). The pembrolizumab monotherapy patients with high CTAB had a greater ORR than the combination therapy group (p = 0.02). CONCLUSIONS: CTA co-expression can be reliably measured using CGIP in solid tumors. As a biomarker, CTAB appears to be independent from PD-L1 expression, suggesting that CTAB represents aspects of tumor immunogenicity not measured by current standard of care testing. Improved OS and ORR for high CTAB NSCLC patients treated with pembrolizumab monotherapy suggests a unique underlying aspect of immune response to these tumor antigens that needs further investigation.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígeno B7-H1/metabolismo , Cetrimônio/uso terapêutico , Estudos Retrospectivos , Testículo/química , Testículo/metabolismo , Testículo/patologia , Antígenos de Neoplasias , Biomarcadores Tumorais/genéticaRESUMO
PURPOSE: Variants of uncertain significance (VUS) are a common result of diagnostic genetic testing and can be difficult to manage with potential misinterpretation and downstream costs, including time investment by clinicians. We investigated the rate of VUS reported on diagnostic testing via multi-gene panels (MGPs) and exome and genome sequencing (ES/GS) to measure the magnitude of uncertain results and explore ways to reduce their potentially detrimental impact. METHODS: Rates of inconclusive results due to VUS were collected from over 1.5 million sequencing test results from 19 clinical laboratories in North America from 2020 to 2021. RESULTS: We found a lower rate of inconclusive test results due to VUSs from ES/GS (22.5%) compared with MGPs (32.6%; P < .0001). For MGPs, the rate of inconclusive results correlated with panel size. The use of trios reduced inconclusive rates (18.9% vs 27.6%; P < .0001), whereas the use of GS compared with ES had no impact (22.2% vs 22.6%; P = ns). CONCLUSION: The high rate of VUS observed in diagnostic MGP testing warrants examining current variant reporting practices. We propose several approaches to reduce reported VUS rates, while directing clinician resources toward important VUS follow-up.
Assuntos
Predisposição Genética para Doença , Testes Genéticos , Humanos , Testes Genéticos/métodos , Genômica , Exoma/genética , América do NorteRESUMO
OBJECTIVE: We tested the hypothesis that FMR1 expansions would result in global gene dysregulation as early as the second trimester of human fetal development. METHOD: Using cell-free fetal RNA obtained from amniotic fluid supernatant and expression microarrays, we compared RNA levels in samples from fetuses with premutation or full mutation allele expansions with control samples. RESULTS: We found clear signals of differential gene expression relating to a variety of cellular functions, including ubiquitination, mitochondrial function, and neuronal/synaptic architecture. Additionally, among the genes showing differential gene expression, we saw links to related diseases of intellectual disability and motor function. Finally, within the unique molecular phenotypes established for each mutation set, we saw clear signatures of mitochondrial dysfunction and disrupted neurological function. Patterns of differential gene expression were very different in male and female fetuses with premutation alleles. CONCLUSION: These results support a model for which genetic misregulation during fetal development may set the stage for late clinical manifestations of FMR1-related disorders. © 2016 John Wiley & Sons, Ltd.
Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Regulação da Expressão Gênica no Desenvolvimento , Expansão das Repetições de DNA , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Gravidez , Segundo Trimestre da GravidezRESUMO
As next-generation sequencing increases access to human genetic variation, the challenge of determining clinical significance of variants becomes ever more acute. Germline variants in the BRCA1 and BRCA2 genes can confer substantial lifetime risk of breast and ovarian cancer. Assessment of variant pathogenicity is a vital part of clinical genetic testing for these genes. A database of clinical observations of BRCA variants is a critical resource in that process. This article describes BRCA Share™, a database created by a unique international alliance of academic centers and commercial testing laboratories. By integrating the content of the Universal Mutation Database generated by the French Unicancer Genetic Group with the testing results of two large commercial laboratories, Quest Diagnostics and Laboratory Corporation of America (LabCorp), BRCA Share™ has assembled one of the largest publicly accessible collections of BRCA variants currently available. Although access is available to academic researchers without charge, commercial participants in the project are required to pay a support fee and contribute their data. The fees fund the ongoing curation effort, as well as planned experiments to functionally characterize variants of uncertain significance. BRCA Share™ databases can therefore be considered as models of successful data sharing between private companies and the academic world.
Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Bases de Dados Factuais , Neoplasias Ovarianas/genética , Curadoria de Dados , Bases de Dados Factuais/economia , Feminino , Predisposição Genética para Doença , Humanos , MutaçãoRESUMO
RATIONALE: Indeterminate pulmonary nodules are a common radiographic finding and require further evaluation because of the concern for lung cancer. OBJECTIVES: We developed an algorithm to assign patients to a low- or high-risk category for lung cancer, based on a combination of serum biomarker levels and nodule size. METHODS: For the serum biomarker assay, we determined levels of carcinoembryonic antigen, α1-antitrypsin, and squamous cell carcinoma antigen. Serum data and nodule size from a training set of 509 patients with (n = 298) and without (n = 211) lung cancer were subjected to classification and regression tree and logistic regression analyses. Multiple models were developed and tested in an independent, masked validation set for their ability to categorize patients with (n = 203) or without (n = 196) lung cancer as being low- or high-risk for lung cancer. MEASUREMENTS AND MAIN RESULTS: In all models, a large percentage of individuals in the validation study with small nodules (<1 cm) were assigned to the low-risk group, and a large percentage of individuals with large nodules (≥3 cm) were assigned to the high-risk group. In the validation study, the classification and regression tree algorithm had overall sensitivity, specificity, and positive and negative predictive values for determining lung cancer of 88%, 82%, 84%, and 87%, respectively. The logistic regression model had overall sensitivity, specificity, and positive and negative predictive values of 80%, 89%, 89%, and 81%, respectively. CONCLUSION: Integration of biomarkers with lung nodule size has the potential to help guide the management of patients with indeterminate pulmonary nodules.
Assuntos
Biomarcadores/sangue , Pneumopatias/diagnóstico , Neoplasias Pulmonares/diagnóstico , Nódulo Pulmonar Solitário/sangue , Nódulo Pulmonar Solitário/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Antígenos de Neoplasias/sangue , Antígeno Carcinoembrionário/sangue , Diagnóstico Diferencial , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Serpinas/sangue , alfa 1-Antitripsina/sangueRESUMO
INTRODUCTION: Tissue-based broad molecular profiling of guideline-recommended biomarkers is advised for the therapeutic management of patients with non-small cell lung cancer (NSCLC). However, practice variation can affect whether all indicated biomarkers are tested. We aimed to evaluate the impact of common single-gene testing (SGT) on subsequent comprehensive genomic profiling (CGP) test outcomes and results in NSCLC. METHODS: Oncologists who ordered SGT for guideline-recommended biomarkers in NSCLC patients were prospectively contacted (May-December 2022) and offered CGP (DNA and RNA sequencing), either following receipt of negative SGT findings, or instead of SGT for each patient. We describe SGT patterns and compare CGP completion rates, turnaround time, and recommended biomarker detection for NSCLC patients with and without prior negative SGT results. RESULTS: Oncologists in > 80 community practices ordered CGP for 561 NSCLC patients; 135 patients (27%) first had negative results from 30 different SGT combinations; 84% included ALK, EGFR and PD-L1, while only 3% of orders included all available SGTs for guideline-recommended genes. Among patients with negative SGT results, CGP was attempted using the same tissue specimen 90% of the time. There were also significantly more CGP order cancellations due to tissue insufficiency (17% vs. 7%), DNA sequencing failures (13% vs. 8%), and turnaround time > 14 days (62% vs. 29%) than among patients who only had CGP. Forty-six percent of patients with negative prior SGT had positive CGP results for recommended biomarkers, including targetable genomic variants in genes beyond ALK and EGFR, such as ERBB2, KRAS (non-G12C), MET (exon 14 skipping), NTRK2/3, and RET . CONCLUSION: For patients with NSCLC, initial use of SGT increases subsequent CGP test cancellations, turnaround time, and the likelihood of incomplete molecular profiling for guideline-recommended biomarkers due to tissue insufficiency.
Patients with non-small cell lung cancer (NSCLC) should have their tumor tissue tested for all recommended biomarkers that can help identify their best treatment options. Traditional tests look at gene biomarkers one by one (single-gene testing), and doctors can order some or all these tests individually or in a group. However, some recommended biomarkers cannot be tested by traditional single-gene tests at all. Newer technology (next-generation sequencing) covers all current recommended treatment biomarkers in one test (comprehensive genomic profiling), but this testing is more expensive and can take more time. Our study shows that NSCLC patients do not get all recommended treatment biomarkers tested when a single-gene testing approach is taken. Single-gene testing also used up some patients' tumor tissue entirely, such that further testing by comprehensive genomic profiling could not be done at all (17% vs. 7% for patients with no prior single-gene tests), resulted in more sequencing failures (13% vs. 8%), and had turnaround time for results greater than 14 days for more patients (62% vs. 29%). When comprehensive genomic profiling was completed, 46% of patients with negative results from prior single-gene testing had positive results for recommended treatment biomarkers that were not included in the initial single-gene tests. To ensure that NSCLC patients receive testing for all recommended biomarkers, comprehensive genomic profiling must be performed first.
RESUMO
Background: KEYNOTE-522 resulted in FDA approval of the immune checkpoint inhibitor pembrolizumab in combination with neoadjuvant chemotherapy for patients with early-stage, high-risk, triple-negative breast cancer (TNBC). Unfortunately, pembrolizumab is associated with several immune-related adverse events (irAEs). We aimed to identify potential tumor microenvironment (TME) biomarkers which could predict patients who may attain pathological complete response (pCR) with chemotherapy alone and be spared the use of anti-PD-1 immunotherapy. Methods: Comprehensive immune profiling, including RNA-seq gene expression assessment of 395 immune genes, was performed on matched FFPE tumor samples from 22 stage I-III TNBC patients (14 patients treated with neoadjuvant chemotherapy alone (NAC) and 8 treated with neoadjuvant chemotherapy combined with pembrolizumab (NAC+I)). Results: Differential gene expression analysis revealed that in the NAC group, IL12B and IL13 were both significantly associated with pCR. In the NAC+I group, LCK and TP63 were significantly associated with pCR. Patients in both treatment groups exhibiting pCR tended to have greater tumor inflammation than non-pCR patients. In the NAC+I group, patients with pCR tended to have greater cell proliferation and higher PD-L1 expression, while in the NAC group, patients with pCR tended to have lower cancer testis antigen expression. Additionally, the NAC+I group trended toward a lower relative dose intensity averaged across all chemotherapy drugs, suggesting that more dose reductions or treatment delays occurred in the NAC+I group than the NAC group. Conclusions: A comprehensive understanding of immunologic factors could potentially predict pCR to chemotherapy alone, enabling the avoidance of the unnecessary treatment of these patients with checkpoint inhibitors.
RESUMO
Introduction: Younger patients with non-small cell lung cancer (NSCLC) (<50 years) represent a significant patient population with distinct clinicopathological features and enriched targetable genomic alterations compared to older patients. However, previous studies of younger NSCLC suffer from inconsistent findings, few studies have incorporated sex into their analyses, and studies targeting age-related differences in the tumor immune microenvironment are lacking. Methods: We performed a retrospective analysis of 8,230 patients with NSCLC, comparing genomic alterations and immunogenic markers of younger and older patients while also considering differences between male and female patients. We defined older patients as those ≥65 years and used a 5-year sliding threshold from <45 to <65 years to define various groups of younger patients. Additionally, in an independent cohort of patients with NSCLC, we use our observations to inform testing of the combinatorial effect of age and sex on survival of patients given immunotherapy with or without chemotherapy. Results: We observed distinct genomic and immune microenvironment profiles for tumors of younger patients compared to tumors of older patients. Younger patient tumors were enriched in clinically relevant genomic alterations and had gene expression patterns indicative of reduced immune system activation, which was most evident when analyzing male patients. Further, we found younger male patients treated with immunotherapy alone had significantly worse survival compared to male patients ≥65 years, while the addition of chemotherapy reduced this disparity. Contrarily, we found younger female patients had significantly better survival compared to female patients ≥65 years when treated with immunotherapy plus chemotherapy, while treatment with immunotherapy alone resulted in similar outcomes. Discussion: These results show the value of comprehensive genomic and immune profiling (CGIP) for informing clinical treatment of younger patients with NSCLC and provides support for broader coverage of CGIP for younger patients with advanced NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/terapia , Masculino , Feminino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Pessoa de Meia-Idade , Idoso , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Fatores Etários , Estudos Retrospectivos , Fatores Sexuais , Adulto , Genômica/métodos , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , ImunoterapiaRESUMO
Background: The understanding of molecular characteristics of HER2-low breast cancer is evolving since the establishment of trastuzumab deruxtecan. Here, we explore the differences in expression patterns of immune-related genes in the tumor immune microenvironment (TME) and survival between HER2-low and HER2-zero breast cancers. Methods: Comprehensive genomic and immune profiling, including RNA-seq gene expression assessment of 395 immune genes, was performed on FFPE samples from 129 patients with advanced HER2-negative (immunohistochemistry (IHC) 0, 1+ or 2+ with negative ERBB2 amplification by in-situ hybridization) breast cancer. Both estrogen receptor (ER) and HER2 statuses were obtained from available pathology reports. mRNA expressions of immune biomarkers, except for PD-L1 IHC and TMB, were derived from RNA-seq. Statistical comparisons were performed using the Kruskal-Wallis or Wilcoxon Rank-Sum test or the two-sample test for equality of proportions with continuity correction (p≤0.05 for significance). Survival differences were calculated using Kaplan-Meier analysis (p≤0.05 for significance). Results: There were no significant differences in mRNA expressions of immune-related genes between HER2-low and HER2-zero breast cancers. However, HER2-low breast cancers were associated with a higher proportion of ER-positivity. When ER was analyzed along with HER2, we observed a significantly higher tumor immunogenic signature (TIGS) expression in HER2-zero/ER-negative tumors than in HER2-low/ER-positive tumors (p=0.0088). Similarly, lower expression of PD-L1 and T cell immunoglobulin and ITIM domain (TIGIT) mRNA was observed in HER2-low/ER-positive tumors when compared to HER2-zero/ER-negative tumors (p=0.014 and 0.012, respectively). Patients with HER2-low tumors had a longer median OS than those with HER2-zero tumors (94 months vs 42 months, p=0.0044). Conclusion: Patients with HER2-low breast cancer have longer survivals yet display no differences in immune-related gene expression when compared to those with HER2-zero cancers. The differences in survival can be attributed to the higher rate of ER-positivity seen in HER2-low breast cancers, compared to HER2-zero tumors.
RESUMO
The COVID-19 pandemic brought forth an urgent need for widespread genomic surveillance for rapid detection and monitoring of emerging SARS-CoV-2 variants. It necessitated design, development, and deployment of a nationwide infrastructure designed for sequestration, consolidation, and characterization of patient samples that disseminates de-identified information to public authorities in tight turnaround times. Here, we describe our development of such an infrastructure, which sequenced 594,832 high coverage SARS-CoV-2 genomes from isolates we collected in the United States (U.S.) from March 13th 2020 to July 3rd 2023. Our sequencing protocol ('Virseq') utilizes wet and dry lab procedures to generate mutation-resistant sequencing of the entire SARS-CoV-2 genome, capturing all major lineages. We also characterize 379 clinically relevant SARS-CoV-2 multi-strain co-infections and ensure robust detection of emerging lineages via simulation. The modular infrastructure, sequencing, and analysis capabilities we describe support the U.S. Centers for Disease Control and Prevention national surveillance program and serve as a model for rapid response to emerging pandemics at a national scale.
Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/epidemiologia , COVID-19/virologia , Estados Unidos/epidemiologia , MutaçãoRESUMO
Host range is a major determinant in the industrial utility of a bacteriophage. A model host range permits broad recognition across serovars of a target bacterium while avoiding cross-reactivity with commensal microbiota. Searching for a naturally occurring bacteriophage with ideal host ranges is challenging, time-consuming, and restrictive. To address this, SPTD1.NL, a previously published luciferase reporter bacteriophage for Salmonella, was used to investigate manipulation of host range through receptor-binding protein engineering. Similar to related members of the Ackermannviridae bacteriophage family, SPTD1.NL possessed a receptor-binding protein gene cluster encoding four tailspike proteins, TSP1-4. Investigation of the native gene cluster through chimeric proteins identified TSP3 as the tailspike protein responsible for Salmonella detection. Further analysis of chimeric phages revealed that TSP2 contributed off-target Citrobacter recognition, whereas TSP1 and TSP4 were not essential for activity against any known host. To improve the host range of SPTD1.NL, TSP1 and TSP2 were sequentially replaced with chimeric receptor-binding proteins targeting Salmonella. This engineered construct, called RBP-SPTD1-3, was a superior diagnostic reporter, sensitively detecting additional Salmonella serovars while also demonstrating improved specificity. For industrial applications, bacteriophages of the Ackermannviridae family are thus uniquely versatile and may be engineered with multiple chimeric receptor-binding proteins to achieve a custom-tailored host range.
Assuntos
Bacteriófagos , Caudovirales , Bacteriófagos/genética , Reações Cruzadas , Especificidade de Hospedeiro , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Importance: In the absence of evidence of clinical utility, the United States' Centers for Disease Control and Prevention does not currently recommend the assessment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike-protein antibody levels. Clinicians and their patients, especially immunocompromised patients, may benefit from an adjunctive objective clinical laboratory measure of risk, using SARS-CoV-2 serology. Objective: The aim of this study is to estimate the association between SARS-CoV-2 spike-protein targeted antibody levels and clinically relevant outcomes overall and among clinically relevant subgroups, such as vaccine and immunocompetency statuses. Design: A retrospective cohort study was conducted using laboratory-based data containing SARS-CoV-2 antibody testing results, as well as medical and pharmacy claim data. SARS-CoV-2 testing was performed by two large United States-based reference clinical laboratories, Labcorp® and Quest Diagnostics, and was linked to medical insurance claims, including vaccination receipt, through the HealthVerity Marketplace. Follow-up for outcomes began after each eligible individual's first SARS-CoV-2 semiquantitative spike-protein targeted antibody test, from 16 November 2020 to 30 December 2021. Exposures: Exposure is defined as having SARS-CoV-2 spike-protein targeted antibody testing. Main outcomes and measures: Study outcomes were SARS-CoV-2 infection and a serious composite outcome (hospitalization with an associated SARS-CoV-2 infection or all-cause death). Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Propensity score matching was used for confounding covariate control. Results: In total, 143,091 (73.2%) and 52,355 (26.8%) eligible individuals had detectable and non-detectable levels of SARS-CoV-2 spike-protein targeted antibodies, respectively. In the overall population, having detectable vs. non-detectable antibodies was associated with an estimated 44% relative reduction in SARS-CoV-2 subsequent infection risk (HR, 0.56; 95% CI 0.53-0.59) and an 80% relative reduction in the risk of serious composite outcomes (HR 0.20; 95% CI 0.15-0.26). Relative risk reductions were observed across subgroups, including among immunocompromised persons. Conclusion and relevance: Individuals with detectable SARS-CoV-2 spike-protein targeted antibody levels had fewer associated subsequent SARS-CoV-2 infections and serious adverse clinical outcomes. Policymakers and clinicians may find SARS-CoV-2 spike-protein targeted serology testing to be a useful adjunct in counseling patients with non-detectable antibody levels about adverse risks and reinforcing appropriate actions to mitigate such risks.
Assuntos
COVID-19 , Humanos , Estados Unidos/epidemiologia , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Estudos Retrospectivos , Glicoproteína da Espícula de CoronavírusRESUMO
Individuals at increased risk for severe coronavirus disease-2019 (COVID-19) outcomes, due to compromised immunity or other risk factors, would benefit from objective measures of vulnerability to infection based on vaccination or prior infection. The authors reviewed published data to identify a specific role and interpretation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike-targeted serology testing. Specific recommendations are provided for an evidence-based and clinically-useful interpretation of SARS-CoV-2 spike-targeted serology to identify vulnerability to infection and potential subsequent adverse outcomes. Decreased vaccine effectiveness among immunocompromised individuals is linked to correspondingly high rates of breakthrough infections. Negative results on SARS-CoV-2 antibody tests are associated with increased risk for subsequent infection. "Low-positive" results on semiquantitative SARS-CoV-2 spike-targeted antibody tests may help identify persons at increased risk as well. Standardized SARS-CoV-2 spike-targeted antibody tests may provide objective information on the risk of SARS-CoV-2 infection and associated adverse outcomes. This holds especially for high-risk populations that demonstrate a relatively high rate of seronegativity. The widespread availability of such tests presents an opportunity to refine risk assessment for individuals with suboptimal SARS-CoV-2 antibody levels and to promote effective interventions. Interim federal guidance would support physicians and patients while additional investigations are pursued.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Anticorpos Antivirais , Infecções IrruptivasRESUMO
Myeloid neoplasms represent a broad spectrum of hematological disorders for which somatic mutation status in key driver genes is important for diagnosis, prognosis and treatment. Here we summarize the findings of a targeted, next generation sequencing laboratory developed test in 24,639 clinical myeloid samples. Data were analyzed comprehensively and as part of individual cohorts specific to acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and myeloproliferative neoplasms (MPN). Overall, 48,015 variants were detected, and variants were found in all 50 genes in the panel. The mean number of mutations per patient was 1.95. Mutation number increased with age (Spearman's rank correlation coefficient, ρ = 0.29, P < 0.0001) and was higher in patients with AML than MDS or MPN (Student's t-test, P < 0.0001). TET2 was the most common mutation detected (19.1% of samples; 4,695/24,639) including 7.7% (1,908/24,639) with multi-hit TET2 mutations. Mutation frequency was correlated between patients with cytopenias and MDS (Spearman's, ρ = 0.97, P < 2.2×10-16) with the MDS diagnostic gene SF3B1 being the only notable outlier. This large retrospective study shows the utility of NGS testing to inform clinical decisions during routine clinical care and highlights the mutational landscape of a broad population of myeloid patients.
Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Humanos , Estudos Retrospectivos , Mutação/genética , Transtornos Mieloproliferativos/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Leucemia Mieloide Aguda/patologiaRESUMO
Bacteriophages have been investigated for clinical utility, both as diagnostic tools and as therapeutic interventions. In order to be applied successfully, a detailed understanding of the influence of the human matrix on the interaction between bacteriophage and the host bacterium is required. In this study, a cocktail of luciferase bacteriophage reporters was assessed for functionality in a matrix containing human serum and spiked with Staphylococcus aureus. The inhibition of signal and loss of sensitivity was evident with minimal amounts of serum. This phenotype was independent of bacterial growth and bacteriophage viability. Serum-mediated loss of signal was common, albeit not universal, among S. aureus strains. Immunoglobulin G was identified as an inhibitory component and partial inhibition was observed with both the f(ab')2 and Fc region. A modified bacteriophage cocktail containing recombinant protein A was developed, which substantially improved signal without the need for additional sample purification. This study highlights the importance of assessing bacteriophage activity in relevant host matrices. Furthermore, it identifies an effective solution, recombinant protein A, for promoting bacteriophage-based detection of S. aureus in matrices containing human serum.
Assuntos
Bacteriófagos , Infecções Estafilocócicas , Bacteriófagos/fisiologia , Humanos , Imunoglobulina G , Proteínas Recombinantes/genética , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/terapia , Staphylococcus aureusRESUMO
Methods that enable monitoring of therapeutic efficacy of autologous chimeric antigen receptor (CAR) T-cell therapy will be clinically useful. The aim of this study is to demonstrate the feasibility of blood-derived cell-free DNA (cfDNA) to predict CAR T-cell therapy response in patients with refractory B-cell lymphomas. Whole blood was collected before and throughout CAR T-cell therapy until day 154. Low-coverage (â¼0.4×), genome-wide cfDNA sequencing, similar to that established for noninvasive prenatal testing, was performed. The genomic instability number (GIN) was used to quantify plasma copy number alteration level. Twelve patients were enrolled. Seven (58%) patients achieved a complete response (CR); 2 (25%), a partial response. Median progression-free survival was 99 days; median overall survival was not reached (median follow-up, 247 days). Altogether, 127 blood samples were analyzed (median, 10 samples/patient [range 8-13]). All 5 patients who remained in CR at the time of last measurement had GIN <170 (threshold). Two patients who attained CR, but later relapsed, and all but one patient who had best response other than CR had last GIN measurement of >170. In 5 of 6 patients with relapsed or progressive disease, increasing GIN was observed before the diagnosis by imaging. The abundance of CAR T-cell construct (absolute number of construct copies relative to the number of human genome equivalents) also showed a trend to correlate with outcome (day 10, P = .052). These data describe a proof-of-concept for the use of multiple liquid biopsy technologies to monitor therapeutic response in B-cell lymphoma patients receiving CAR T-cell therapy.
Assuntos
Ácidos Nucleicos Livres , Linfoma de Células B , Receptores de Antígenos Quiméricos , Antígenos CD19/genética , Humanos , Imunoterapia Adotiva , Linfoma de Células B/genética , Receptores de Antígenos Quiméricos/genéticaRESUMO
The lack of bacteriophages capable of infecting the Listeria species, Listeria grayi, is academically intriguing and presents an obstacle to the development of bacteriophage-based technologies for Listeria. We describe the isolation and engineering of a novel L. grayi bacteriophage, LPJP1, isolated from farm silage. With a genome over 200,000 base pairs, LPJP1 is the first and only reported jumbo bacteriophage infecting the Listeria genus. Similar to other Gram-positive jumbo phages, LPJP1 appeared to contain modified base pairs, which complicated initial attempts to obtain genomic sequence using standard methods. Following successful sequencing with a modified approach, a recombinant of LPJP1 encoding the NanoLuc luciferase was engineered using homologous recombination. This luciferase reporter bacteriophage successfully detected 100 stationary phase colony forming units of both subspecies of L. grayi in four hours. A single log phase colony forming unit was also sufficient for positive detection in the same time period. The recombinant demonstrated complete specificity for this particular Listeria species and did not infect 150 non-L. grayi Listeria strains nor any other bacterial genus. LPJP1 is believed to be the first reported lytic bacteriophage of L. grayi as well as the only jumbo bacteriophage to be successfully engineered into a luciferase reporter.
Assuntos
Bacteriófagos/genética , Monitoramento Ambiental/métodos , Listeria/isolamento & purificação , Bacteriófagos/isolamento & purificação , Inocuidade dos Alimentos , Engenharia Genética , Listeria/virologia , Luciferases/genética , Silagem/microbiologiaRESUMO
When tissue biopsy is not medically prudent or tissue is insufficient for molecular testing, alternative methods are needed. Because cell-free DNA (cfDNA) has been shown to provide a representative surrogate for tumor tissue, we sought to evaluate its utility in this clinical scenario. cfDNA was isolated from the plasma of patients and assayed with low-coverage (â¼0.3×), genome-wide sequencing. Copy-number alterations (CNA) were identified and characterized using analytic methods originally developed for noninvasive prenatal testing (NIPT) and quantified using the genomic instability number (GIN), a metric that reflects the quantity and magnitude of CNAs across the genome. The technical variability of the GIN was first evaluated in an independent cohort comprising genome-wide sequencing results from 27,754 women who consented to have their samples used for research and whose NIPT results yielded no detected CNAs to establish a detection threshold. Subsequently, cfDNA sequencing data from 96 patients with known cancers but for whom a tissue biopsy could not be obtained are presented. An elevated GIN was detected in 35% of patients and detection rates varied by tumor origin. Collectively, CNAs covered 96.6% of all autosomes. Survival was significantly reduced in patients with an elevated GIN relative to those without. Overall, these data provide a proof of concept for the use of low-coverage, genome-wide sequencing of cfDNA from patients with cancer to obtain relevant molecular information in instances where tissue is difficult to access. These data may ultimately serve as an informative complement to other molecular tests.
Assuntos
Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA/genética , Neoplasias/genética , Sequenciamento Completo do Genoma/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medicina de Precisão , Adulto JovemRESUMO
Salmonella is a major causative agent of foodborne illness and rapid identification of this pathogen is essential to prevent disease. Currently most assays require high bacterial burdens or prolonged enrichment to achieve acceptable performance. A reduction in testing time without loss of sensitivity is critical to allow food processors to safely decrease product holding time. To meet this need, a method was developed to detect Salmonella using luciferase reporter bacteriophages. Bacteriophages were engineered to express NanoLuc, a novel optimized luciferase originating from the deep-sea shrimp Oplophorus gracilirostris. NanoLuc-expressing bacteriophages had a limit of detection of 10-100 CFU per mL in culture without enrichment. Luciferase reporters demonstrated a broad host range covering all Salmonella species with one reporter detecting 99.3% of 269 inclusivity strains. Cross-reactivity was limited and only observed with other members of the Enterobacteriaceae family. In food matrix studies, a cocktail of engineered bacteriophages accurately detected 1 CFU in either 25 g of ground turkey with a 7 h enrichment or 100 g of powdered infant formula with a 16 h enrichment. Use of the NanoLuc reporter assay described herein resulted in a considerable reduction in enrichment time without a loss of sensitivity.