Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Sci Rep ; 10(1): 10061, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555402

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sci Rep ; 7(1): 1366, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465615

RESUMO

Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Técnicas Analíticas Microfluídicas , Análise de Célula Única/métodos , Proliferação de Células , Sobrevivência Celular , Escherichia coli/isolamento & purificação , Células HL-60 , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Análise de Célula Única/instrumentação
3.
Clin Cancer Res ; 21(5): 1087-97, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25248381

RESUMO

PURPOSE: KRAS mutations are predictive of nonresponse to anti-EGFR therapies in metastatic colorectal cancer (mCRC). However, only 50% of nonmutated patients benefit from them. KRAS-mutated subclonal populations nondetectable by conventional methods have been suggested as the cause of early progression. Molecular analysis technology with high sensitivity and precision is required to test this hypothesis. EXPERIMENTAL DESIGN: From two cohorts of patients with mCRC, 136 KRAS, NRAS, and BRAF wild-type tumors with sufficient tumor material to perform highly sensitive picodroplet digital PCR (dPCR) and 41 KRAS-mutated tumors were selected. All these patients were treated by anti-EGFR therapy. dPCR was used for KRAS or BRAF mutation screening and compared with qPCR. Progression-free survival (PFS) and overall survival (OS) were analyzed according to the KRAS-mutated allele fraction. RESULTS: In addition to the confirmation of the 41 patients with KRAS-mutated tumors, dPCR also identified KRAS mutations in 22 samples considered as KRAS wild-type by qPCR. The fraction of KRAS-mutated allele quantified by dPCR was inversely correlated with anti-EGFR therapy response rate (P < 0.001). In a Cox model, the fraction of KRAS-mutated allele was associated with worse PFS and OS. Patients with less than 1% of mutant KRAS allele have similar PFS and OS than those with wild-type KRAS tumors. CONCLUSIONS: This study suggests that patients with mCRC with KRAS-mutated subclones (at least those with a KRAS-mutated subclones fraction lower or equal to 1%) had a benefit from anti-EGFR therapies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Receptores ErbB/antagonistas & inibidores , Terapia de Alvo Molecular , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Antineoplásicos/farmacologia , Estudos de Coortes , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas Proto-Oncogênicas B-raf/genética , Retratamento , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa