Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323876

RESUMO

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.

2.
Environ Res ; 260: 119630, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39019137

RESUMO

Although many studies have discussed the impact of Europe's air quality, very limited research focused on the detailed phenomenology of ambient trace elements (TEs) in PM10 in urban atmosphere. This study compiled long-term (2013-2022) measurements of speciation of ambient urban PM10 from 55 sites of 7 countries (Switzerland, Spain, France, Greece, Italy, Portugal, UK), aiming to elucidate the phenomenology of 20 TEs in PM10 in urban Europe. The monitoring sites comprised urban background (UB, n = 26), traffic (TR, n = 10), industrial (IN, n = 5), suburban background (SUB, n = 7), and rural background (RB, n = 7) types. The sampling campaigns were conducted using standardized protocols to ensure data comparability. In each country, PM10 samples were collected over a fixed period using high-volume air samplers. The analysis encompassed the spatio-temporal distribution of TEs, and relationships between TEs at each site. Results indicated an annual average for the sum of 20 TEs of 90 ± 65 ng/m3, with TR and IN sites exhibiting the highest concentrations (130 ± 66 and 131 ± 80 ng/m3, respectively). Seasonal variability in TEs concentrations, influenced by emission sources and meteorology, revealed significant differences (p < 0.05) across all monitoring sites. Estimation of TE concentrations highlighted distinct ratios between non-carcinogenic and carcinogenic metals, with Zn (40 ± 49 ng/m3), Ti (21 ± 29 ng/m3), and Cu (23 ± 35 ng/m3) dominating non-carcinogenic TEs, while Cr (5 ± 7 ng/m3), and Ni (2 ± 6 ng/m3) were prominent among carcinogenic ones. Correlations between TEs across diverse locations and seasons varied, in agreement with differences in emission sources and meteorological conditions. This study provides valuable insights into TEs in pan-European urban atmosphere, contributing to a comprehensive dataset for future environmental protection policies.


Assuntos
Poluentes Atmosféricos , Cidades , Monitoramento Ambiental , Material Particulado , Oligoelementos , Material Particulado/análise , Poluentes Atmosféricos/análise , Oligoelementos/análise , Monitoramento Ambiental/métodos , Europa (Continente) , Atmosfera/química , Estações do Ano , Poluição do Ar/análise
3.
J Hum Nutr Diet ; 37(4): 1050-1060, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38778633

RESUMO

BACKGROUND: Guidelines recommend enteral feeding via gastrostomy should be considered for adult survivors of stroke with dysphagia who cannot eat or drink sufficiently for >4 weeks. Many people continue long-term tube-feeding via this route in the community where healthcare professionals contribute to their care and nutritional management, although little is known about their experiences of or attitudes towards enteral feeding in this situation. The present study aimed to explore the experiences and attitudes of healthcare professionals working with this patient group. METHODS: Healthcare professionals were invited to complete a questionnaire devised for the study which comprised closed and open questions about tube-feeding including their patients' participation in feeding processes and mealtimes and how these might be improved. Responses to closed questions were analysed descriptively and free-text responses analysed using thematic analysis. RESULTS: Fifty-seven participants met the inclusion criteria. They identified patients' quality of life (77% of respondents) and nutritional support (75%) as the most important aspects of tube-feeding. Good communication and training with healthcare teams and carers were considered important. Their patients' participation in tube-feed administration and mealtime involvement were described as variable and potentially beneficial, but both were related to patients' choice and health impairment. Blended tube-feeding was considered an option by 89% provided practical and safety conditions were met. CONCLUSIONS: Participants' experiences of and attitudes towards tube feeding in adults living with stroke in the community in the sample in the present study are varied and focussed on individual patients' needs, safety and professional standards.


Assuntos
Atitude do Pessoal de Saúde , Nutrição Enteral , Acidente Vascular Cerebral , Humanos , Nutrição Enteral/métodos , Nutrição Enteral/psicologia , Masculino , Feminino , Inquéritos e Questionários , Acidente Vascular Cerebral/psicologia , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/complicações , Pessoa de Meia-Idade , Adulto , Qualidade de Vida , Idoso , Transtornos de Deglutição/terapia , Transtornos de Deglutição/psicologia , Transtornos de Deglutição/etiologia , Pessoal de Saúde/psicologia , Reabilitação do Acidente Vascular Cerebral/métodos , Reabilitação do Acidente Vascular Cerebral/psicologia , Refeições/psicologia
4.
Acta Microbiol Immunol Hung ; 71(1): 10-24, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38381174

RESUMO

Carbapenems are considered to be among the last line antibiotics against extended-spectrum ß-lactamase producing Enterobacterales. Carbapenem-resistant Klebsiella pneumoniae (CRKP) has been frequently reported and its spread in Europe is indisputable and poses an enormous threat to hospitalized patients which is of growing concern. This review aims to record prevalence of CRKP in the Balkan region and to review the current knowledge about this life-threatening pathogen. In this review, we summarize data about clinical isolates of carbapenem-resistant K. pneumoniae from Greece, Croatia, Romania, Bulgaria, Serbia, Slovenia, Montenegro, Bosnia-Herzegovina and Albania from published reports between 2000 and 2023. Among Balkan countries, Greece and Romania are the ones with the most reports about CRKP. Since 2007, KPCs are the dominant carbapenemases in both countries. KPC-2 and NDM-1-producing K. pneumoniae strains have been identified as the most frequent CRKP in Croatia, Bulgaria, Serbia, and Slovenia. OXA-48 enzyme has been identified in most Balkan countries. In addition, since 2018, CRKP sequence type 11 (ST11) seems to have replaced ST258 in Balkan Peninsula, while ST15 continues to thrive throughout the years. Not only efficacy of colistin against CRKP has decreased dramatically during the last ten years but colistin resistance mechanism is based on alterations of chromosomal mgrB gene, rather than the already known mcr genes.Moreover, ceftazidime-avibactam-resistant CRKP were detected mostly in Greece. Emergence of CRKP poses a severe threat to the Balkan countries. Due to the narrow therapeutic window, it is essential to prevent the spread of multiresistant K. pneumoniae strains.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Colistina , Klebsiella pneumoniae , Península Balcânica/epidemiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
5.
Environ Sci Technol ; 55(20): 13834-13848, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34585576

RESUMO

From early April 2020, wildfires raged in the highly contaminated areas around the Chernobyl nuclear power plant (CNPP), Ukraine. For about 4 weeks, the fires spread around and into the Chernobyl exclusion zone (CEZ) and came within a few kilometers of both the CNPP and radioactive waste storage facilities. Wildfires occurred on several occasions throughout the month of April. They were extinguished, but weather conditions and the spread of fires by airborne embers and smoldering fires led to new fires starting at different locations of the CEZ. The forest fires were only completely under control at the beginning of May, thanks to the tireless and incessant work of the firefighters and a period of sustained precipitation. In total, 0.7-1.2 TBq 137Cs were released into the atmosphere. Smoke plumes partly spread south and west and contributed to the detection of airborne 137Cs over the Ukrainian territory and as far away as Western Europe. The increase in airborne 137Cs ranged from several hundred µBq·m-3 in northern Ukraine to trace levels of a few µBq·m-3 or even within the usual background level in other European countries. Dispersion modeling determined the plume arrival time and was helpful in the assessment of the possible increase in airborne 137Cs concentrations in Europe. Detections of airborne 90Sr (emission estimate 345-612 GBq) and Pu (up to 75 GBq, mostly 241Pu) were reported from the CEZ. Americium-241 represented only 1.4% of the total source term corresponding to the studied anthropogenic radionuclides but would have contributed up to 80% of the inhalation dose.


Assuntos
Poluentes Radioativos do Ar , Acidente Nuclear de Chernobyl , Incêndios , Incêndios Florestais , Poluentes Radioativos do Ar/análise , Radioisótopos de Césio/análise , Europa (Continente) , Ucrânia
6.
J Environ Sci (China) ; 107: 49-64, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34412787

RESUMO

Lake Baikal is the biggest reservoir of fresh water with unique flora and fauna; presently it is negatively affected by climate change, water warming, industrial emissions, shipping, touristic activities, and Siberian forest fires. The assessment of air pollution - related Baikal's ecosystem damage is an unsolved problem. Ship, based expedition exploring the Baikal atmospheric aerosol loading, was performed over the lake area in July 2018. We combine the aerosol near - water and vertical distributions over the Lake Baikal basin with meteorological observations and air mass transportation simulations. Lidar sounding of aerosol fields in the troposphere assesses the atmospheric background in the pristine areas and the pollution during fire-affected periods. Aerosol optical properties (scattering and spectral absorption) converted to the particle number size, black carbon (BC) mass, and Absorption Angstrom Exponent (AAE) provide the inside into aerosol characterization. Transport of industrial emissions from Krasnoyarsk and Irkutsk regions, and wildfire plumes from Republic of Yakutia relates the pollution sources to the increased concentrations of fine particle numbers, PM10 and BC mass over Southern and Northern/Central Baikal, respectively. The highest PM10 and BC are associated to the harbor and touristic areas of intensive shipping and residential biomass burning. Deposition estimates applied to aerosol data exhibit the pollution fluxes to water surface over the whole Baikal area. AAE marks the impact of coal combustion, residential biomass burning, and wildfires indicating the high pollution level of the Lake Baikal ecological system .


Assuntos
Poluentes Atmosféricos , Incêndios Florestais , Aerossóis/análise , Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental
7.
J Environ Sci (China) ; 100: 51-61, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33279053

RESUMO

Traffic is a main source of air pollutants in urban areas and consequently daily peak exposures tend to occur during commuting. Personal exposure to particulate matter (PM) was monitored while cycling and travelling by bus, car and metro along an assigned route in Lisbon (Portugal), focusing on PM2.5 and PM10 (PM with aerodynamic diameter <2.5 and 10 µm, respectively) mass concentrations and their chemical composition. In vehicles, the indoor-outdoor interplay was also evaluated. The PM2.5 mean concentrations were 28 ± 5, 31 ± 9, 34 ± 9 and 38 ± 21 µg/m3 for bus, bicycle, car and metro modes, respectively. Black carbon concentrations when travelling by car were 1.4 to 2.0 times higher than in the other transport modes due to the closer proximity to exhaust emissions. There are marked differences in PM chemical composition depending on transport mode. In particular, Fe was the most abundant component of metro PM, derived from abrasion of rail-wheel-brake interfaces. Enhanced concentrations of Zn and Cu in cars and buses were related with brake and tyre wear particles, which can penetrate into the vehicles. In the motorised transport modes, Fe, Zn, Cu, Ni and K were correlated, evidencing their common traffic-related source. On average, the highest inhaled dose of PM2.5 was observed while cycling (55 µg), and the lowest in car travels (17 µg). Cyclists inhaled higher doses of PM2.5 due to both higher inhalation rates and longer journey times, with a clear enrichment in mineral elements. The presented results evidence the importance of considering the transport mode in exposure assessment studies.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Portugal , Emissões de Veículos/análise
8.
Environ Res ; 183: 109203, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32050129

RESUMO

Exposure to particulate matter (PM) has been associated with adverse health outcomes, particularly in susceptible population groups such as children. This study aims to characterise children's exposure to PM and its chemical constituents. Size-segregated aerosol samples (PM0.25, PM0.25-0.5, PM0.5-1.0, PM1.0-2.5 and PM2.5-10) were collected in the indoor and outdoor of homes and schools located in Lisbon (Portugal). Organic and elemental carbon (OC and EC) were determined by a thermo-optical method, whereas major and trace elements were analysed by X-Ray Fluorescence. In school, the children were exposed to higher PM concentrations than in home, which might be associated not only to the elevated human occupancy but also to outdoor infiltration. The pattern of PM mass size distribution was dependent on the location (home vs. school and indoor vs. outdoor). The presence of EC in PM0.25 and OC in PM0.25-0.5 was linked to traffic exhaust emissions. OC and EC in PM2.5-10 may be explained by their adhesion to the surface of coarser particles. Generally, the concentrations of mineral and marine elements increased with increasing PM size, while for anthropogenic elements happened the opposite. In schools, the concentrations of mineral matter, anthropogenic elements and marine aerosol were higher than in homes. High mineral matter concentrations found in schools were related to the close proximity to busy roads and elevated human occupancy. Overall, the results suggest that exposure to PM is relevant and highlights the need for strategies that provide healthier indoor environments, principally in schools.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Material Particulado , Criança , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/toxicidade , Portugal , Instituições Acadêmicas
9.
Epidemiology ; 28(2): 172-180, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27922535

RESUMO

BACKGROUND: Epidemiologic evidence on the association between short-term exposure to ultrafine particles and mortality is weak, due to the lack of routine measurements of these particles and standardized multicenter studies. We investigated the relationship between ultrafine particles and particulate matter (PM) and daily mortality in eight European urban areas. METHODS: We collected daily data on nonaccidental and cardiorespiratory mortality, particle number concentrations (as proxy for ultrafine particle number concentration), fine and coarse PM, gases and meteorologic parameters in eight urban areas of Finland, Sweden, Denmark, Germany, Italy, Spain, and Greece, between 1999 and 2013. We applied city-specific time-series Poisson regression models and pooled them with random-effects meta-analysis. RESULTS: We estimated a weak, delayed association between particle number concentration and nonaccidental mortality, with mortality increasing by approximately 0.35% per 10,000 particles/cm increases in particle number concentration occurring 5 to 7 days before death. A similar pattern was found for cause-specific mortality. Estimates decreased after adjustment for fine particles (PM2.5) or nitrogen dioxide (NO2). The stronger association found between particle number concentration and mortality in the warmer season (1.14% increase) became null after adjustment for other pollutants. CONCLUSIONS: We found weak evidence of an association between daily ultrafine particles and mortality. Further studies are required with standardized protocols for ultrafine particle data collection in multiple European cities over extended study periods.


Assuntos
Poluição do Ar/estatística & dados numéricos , Cidades , Exposição Ambiental/estatística & dados numéricos , Mortalidade , Dióxido de Nitrogênio , Material Particulado , População Urbana/estatística & dados numéricos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Dinamarca , Europa (Continente) , Feminino , Finlândia , Alemanha , Grécia , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Pessoa de Meia-Idade , Distribuição de Poisson , Análise de Regressão , Espanha , Suécia , Fatores de Tempo , Adulto Jovem
10.
Environ Sci Technol ; 51(7): 3871-3879, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28234491

RESUMO

Understanding the role of short-lived climate forcers such as black carbon (BC) at high northern latitudes in climate change is hampered by the scarcity of surface observations in the Russian Arctic. In this study, highly time-resolved Equivalent BC (EBC) measurements during a ship campaign in the White, Barents, and Kara Seas in October 2015 are presented. The measured EBC concentrations are compared with BC concentrations simulated with a Lagrangian particle dispersion model coupled with a recently completed global emission inventory to quantify the origin of the Arctic BC. EBC showed increased values (100-400 ng m-3) in the Kara Strait, Kara Sea, and Kola Peninsula and an extremely high concentration (1000 ng m-3) in the White Sea. Assessment of BC origin throughout the expedition showed that gas-flaring emissions from the Yamal-Khanty-Mansiysk and Nenets-Komi regions contributed the most when the ship was close to the Kara Strait, north of 70° N. Near Arkhangelsk (White Sea), biomass burning in mid-latitudes, surface transportation, and residential and commercial combustion from Central and Eastern Europe were found to be important BC sources. The model reproduced observed EBC concentrations efficiently, building credibility in the emission inventory for BC emissions at high northern latitudes.


Assuntos
Mudança Climática , Fuligem , Regiões Árticas , Carbono , Oceanos e Mares
11.
Environ Res ; 146: 35-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26717078

RESUMO

Sampling campaigns using the same equipment and methodology were conducted to assess and compare the air quality at three South European subway systems (Barcelona, Athens and Oporto), focusing on concentrations and chemical composition of PM2.5 on subway platforms, as well as PM2.5 concentrations inside trains. Experimental results showed that the mean PM2.5 concentrations widely varied among the European subway systems, and even among different platforms within the same underground system, which might be associated to distinct station and tunnel designs and ventilation systems. In all cases PM2.5 concentrations on the platforms were higher than those in the urban ambient air, evidencing that there is generation of PM2.5 associated with the subway systems operation. Subway PM2.5 consisted of elemental iron, total carbon, crustal matter, secondary inorganic compounds, insoluble sulphate, halite and trace elements. Of all metals, Fe was the most abundant, accounting for 29-43% of the total PM2.5 mass (41-61% if Fe2O3 is considered), indicating the existence of an Fe source in the subway system, which could have its origin in mechanical friction and wear processes between rails, wheels and brakes. The trace elements with the highest enrichment in the subway PM2.5 were Ba, Cu, Mn, Zn, Cr, Sb, Sr, Ni, Sn, Co, Zr and Mo. Similar PM2.5 diurnal trends were observed on platforms from different subway systems, with higher concentrations during subway operating hours than during the transport service interruption, and lower levels on weekends than on weekdays. PM2.5 concentrations depended largely on the operation and frequency of the trains and the ventilation system, and were lower inside the trains, when air conditioning system was operating properly, than on the platforms. However, the PM2.5 concentrations increased considerably when the train windows were open. The PM2.5 levels inside the trains decreased with the trains passage in aboveground sections.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Ferrovias , Monitoramento Ambiental , Grécia , Tamanho da Partícula , Portugal , Espanha , Análise Espacial , Fatores de Tempo
12.
Environ Monit Assess ; 186(1): 151-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24037179

RESUMO

Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Ventilação , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Grécia
13.
Environ Sci Pollut Res Int ; 31(27): 39588-39601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822961

RESUMO

This work presents the first comprehensive assessment of PM pollution sources in Dushanbe, Tajikistan. A total of 138 PM2.5 samples were collected during 2015-2016 and 2018-2019 and were analyzed through gravimetric, ED-XRF, and multi-wavelength absorption techniques. The results show that PM2.5 concentrations were substantially higher than the European annual limit value and WHO Air Quality Guidelines annual average value, with an average of 90.9 ± 68.5 µg m-3. The PMF application identified eight sources of pollution that influenced PM2.5 concentration levels in the area. Coal burning (21.3%) and biomass burning (22.3%) were the dominant sources during the winter, while vehicular traffic (7.7%) contributed more during the warm season. Power plant emissions (17.5%) showed enhanced contributions during the warm months, likely due to high energy demand. Cement industry emissions (6.9%) exhibited significant contribution during the cold period of 2018-2019, while soil dust (11.3%) and secondary sulphates (11.5%) displayed increased contribution during the warm and cold months, respectively. Finally, waste burning (1.5%) displayed the lowest contribution, with no significant temporal variation. Our results highlight the significant impact of anthropogenic activities, and especially the use of coal burning for energy production (both in power plants and for residential heating), and the significant contribution of biomass burning during both warm and cold seasons.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Tadjiquistão , Poluentes Atmosféricos/análise , Material Particulado/análise , Cidades , Estações do Ano , Emissões de Veículos/análise
14.
Heliyon ; 10(10): e31340, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813153

RESUMO

Poor air quality in workplaces constitutes a great concern on human health as a good fraction of our time is spent at work. In Greece, very unique workplaces are the street corner kiosks, which are freestanding boxes placed on sidewalks next to city streets and vehicular traffic, where one can find many consumer goods. As such, its employees are exposed to both outdoor and indoor air pollutants. Very few studies have examined the occupational exposure of kiosk workers to air pollutants, and thus the magnitude of this unique indoor and outdoor exposure remains unknown. The objective of this study is to investigate and compare the levels of indoor and outdoor particulate matter (PM10 and PM2.5), ultrafine particles (UFPs) and black carbon (BC) in different kiosks located in Athens, Greece, in urban-traffic and urban-background environments. Continuous measurements of the above-mentioned pollutants were carried out on a 24-h basis over 7 consecutive days at three kiosks from September to October 2019. Indoor PM10 concentrations in the urban kiosk ranged from 19.0 to 44.0 µg/m3, PM2.5 values ranged from 14.0 to 33.0 µg/m3, whereas BC concentrations ranged from 1.2 to 7.0 µg/m3 and UFPs from almost 9.5 to 47.0 × 103 pt/cm3. Outdoor PM10 and PM2.5 measurements ranged from 29.0 to 59.0 µg/m3 and from 22.0 to 39.0 µg/m3, respectively. BC outdoor concentrations ranged from 1.1 to 2.2 µg/m3. The mean hazard quotient (HQ) for PM10 (4.9) and PM2.5 (4.7) among all participants was >1. The health risk of exposure to PM10 and PM2.5 was found to be at moderate hazard levels, although in some cases we observed HQ values higher than 10 due to high PM10 and PM2.5 concentrations in the kiosks. Overall our study indicates that people working at kiosks can be exposed to very high concentrations on particulate pollution depending on a number of factors including the traffic that strongly depends on location and the time of the day.

15.
Appl Radiat Isot ; 206: 111252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422941

RESUMO

This study analyzed 16070 daily and 608 weekly air filter samples from the Helsinki metropolitan area collected between 1962 and 2005. The aim was to use the Potential Source Contribution Function (PSCF) to determine potential sources of silicon (Si), zinc (Zn), lead (Pb), and radioactive isotope 210Pb. The main sources for Si and Pb were industrial activities, particularly mining, metal industry, and traffic. Common source areas for Zn and 210Pb were identified in the eastern and southeastern parts of the measuring site.

16.
Sci Total Environ ; 918: 170315, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38278235

RESUMO

High population and a wide range of activities in a megacity lead to large-scale ecological consequences which require the assessment with respect to distinct characteristics of climate, location, fuel consumption, and emission sources. In-depth study of aerosol characteristics was carried out in Moscow, the largest megacity in Europe, during the cold period (autumn and winter) and in spring. PM10 chemical speciation based on carbonaceous matter, water-soluble ions, and elements was carried out to reconstruct the PM mass and evaluate the primary and secondary aerosol contribution. For the whole study period organic matter, mineral dust, and secondary inorganic/organic accounted for 34, 24, and 16 % of PM10 mass, respectively. PM10, OC, and EC approached a maximum in spring and decreased in winter. Mineral dust seasonal fraction increased from spring (17 %) to autumn (32 %), and then decreased in winter (22 %). Secondary inorganic aerosols (SIA) in opposite showed the maximum 27 % in winter. K+ marked the residential biomass burning in the region surrounding a megacity in spring and autumn, agriculture fires in spring. In winter primary aerosol contribution dropped down 56 % while secondary approached practically equal 44 %. Source factors with the relative contributions are quantified, namely city dust (26 %), traffic (23 %), industrial (20 %), biomass burning (12 %), secondary (12 %), and de-icing salt (7 %); they were significantly varying between the cold heating period and springtime. The relevance of sources to meteorological parameters and mass transportation is investigated by using both bivariate polar plots and Lagrangian integrated trajectory (HYSPLIT) model. Trajectory clustering demonstrates regional sources being crucial contributors to PM10 pollution. Aerosol speciation and source apportion factors identify the differences of the Moscow urban background among large European and Asian cities due to northern climate conditions, fast construction, long-range transport from industrial-developing area surrounding a city, regional biomass burning preferably in spring and autumn, and winter road management.

17.
NPJ Clim Atmos Sci ; 7(1): 145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915306

RESUMO

Recent years have shown that secondary ice production (SIP) is ubiquitous, affecting all clouds from polar to tropical regions. SIP is not described well in models and may explain biases in warm mixed-phase cloud ice content and structure. Through modeling constrained by in-situ observations and its synergy with radar we show that SIP in orographic clouds exert a profound impact on the vertical distribution of hydrometeors and precipitation, especially in seeder-feeder cloud configurations. The mesoscale model simulations coupled with a radar simulator strongly support that enhanced aggregation and SIP through ice-ice collisions contribute to observed spectral bimodalities, skewing the Doppler spectra toward the slower-falling side at temperatures within the dendritic growth layer, ranging from -20 °C to -10 °C. This unique signature provides an opportunity to infer long-term SIP occurrences from the global cloud radar data archive, particularly for this underexplored temperature regime.

18.
Sci Total Environ ; 913: 169683, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160832

RESUMO

Exposure to wildfire smoke and dust can severely affect air quality and health. Although particulate matter (PM) levels and exposure are well-established metrics linking to health outcomes, they do not consider differences in particle toxicity or deposition location in the respiratory tract (RT). Usage of the oxidative potential (OP) exposure may further shape our understanding on how different pollution events impact health. Towards this goal, we estimate the aerosol deposition rates, OP and resulting OP deposition rates in the RT for a typical adult Caucasian male residing in Athens, Greece. We focus on a period when African dust (1-3 of August 2021) and severe wildfires at the northern part of the Attika peninsula and the Evia island, Greece (4-18 of August 2021) affected air quality in Athens. During these periods, the aerosol levels increased twofold leading to exceedances of the World Health Organization (WHO) [15(5) µg m-3] PM10 (PM2.5) air quality standard by almost 100 %. We show that the OP exposure is 1.5-times larger during the wildfire smoke events than during the dust intrusion, even if the latter was present in higher mass loads - because wildfire smoke has a higher specific OP than dust. This result carries two important implications: OP exposure should be synergistically used with other metrics - such as PM levels - to efficiently link aerosol exposure with the resulting health effects, and, certain sources of air pollution (in our case, exposure to biomass burning smoke) may need to be preferentially controlled, whenever possible, owing to their disproportionate contribution to OP exposure and ability to penetrate deeper into the human RT.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Adulto , Humanos , Masculino , Poeira , Poluentes Atmosféricos/análise , Material Particulado/análise , Fumaça/efeitos adversos , Sistema Respiratório/química , Estresse Oxidativo
19.
Environ Int ; 185: 108553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460240

RESUMO

A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial-temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2 g-1 from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2 g-1 from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasize the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Estações do Ano , Fuligem/análise , Carbono/análise , Material Particulado/análise
20.
Environ Int ; 185: 108510, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460241

RESUMO

Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations. PNSD datasets from 12 urban background (UB), 5 traffic (TR), 3 suburban background (SUB) and 1 regional background (RB) sites in 15 European cities and 1 in the USA were evaluated. The non-parametric Theil-Sen's method was used to detect monotonic trends. Meta-analyses were carried out to assess the overall trends and those for different environments. The results showed significant decreases in NO, NO2, BC, CO, and particle concentrations in the Aitken (25-100 nm) and the Accumulation (100-800 nm) modes, suggesting a positive impact of the implementation of EURO 5/V and 6/VI vehicle standards on European air quality. The growing use of Diesel Particle Filters (DPFs) might also have clearly reduced exhaust emissions of BC, PM, and the Aitken and Accumulation mode particles. However, as reported by prior studies, there remains an issue of poor control of Nucleation mode particles (smaller than 25 nm), which are not fully reduced with current DPFs, without emission controls for semi-volatile organic compounds, and might have different origins than road traffic. Thus, contrasting trends for Nucleation mode particles were obtained across the cities studied. This mode also affected the UFP and total PNC trends because of the high proportion of Nucleation mode particles in both concentration ranges. It was also found that the urban temperature increasing trends might have also influenced those of PNC, Nucleation and Aitken modes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa