Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 155(6): 1220-31, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24315094

RESUMO

The final cleavage event that terminates cell division, abscission of the small, dense intercellular bridge, has been particularly challenging to resolve. Here, we describe imaging innovations that helped answer long-standing questions about the mechanism of abscission. We further explain how computational modeling of high-resolution data was employed to test hypotheses and generate additional insights. We present the model that emerges from application of these complimentary approaches. Similar experimental strategies will undoubtedly reveal exciting details about other underresolved cellular structures.


Assuntos
Citocinese , Modelos Biológicos , Células Vegetais/ultraestrutura , Animais , Fenômenos Fisiológicos Celulares , Humanos , Células Vegetais/metabolismo
2.
PLoS Biol ; 22(4): e3002327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38687820

RESUMO

Mutations in the human AAA-ATPase VPS4 isoform, VPS4A, cause severe neurodevelopmental defects and congenital dyserythropoietic anemia (CDA). VPS4 is a crucial component of the endosomal sorting complex required for transport (ESCRT) system, which drives membrane remodeling in numerous cellular processes, including receptor degradation, cell division, and neural pruning. Notably, while most organisms encode for a single VPS4 gene, human cells have 2 VPS4 paralogs, namely VPS4A and VPS4B, but the functional differences between these paralogs is mostly unknown. Here, we set out to investigate the role of the human VPS4 paralogs in cytokinetic abscission using a series of knockout cell lines. We found that VPS4A and VPS4B hold both overlapping and distinct roles in abscission. VPS4A depletion resulted in a more severe abscission delay than VPS4B and was found to be involved in earlier stages of abscission. Moreover, VPS4A and a monomeric-locked VPS4A mutant bound the abscission checkpoint proteins CHMP4C and ANCHR, while VPS4B did not, indicating a regulatory role for the VPS4A isoform in abscission. Depletion of VTA1, a co-factor of VPS4, disrupted VPS4A-ANCHR interactions and accelerated abscission, suggesting that VTA1 is also involved in the abscission regulation. Our findings reveal a dual role for VPS4A in abscission, one that is canonical and can be compensated by VPS4B, and another that is regulatory and may be delivered by its monomeric form. These observations provide a potential mechanistic explanation for the neurodevelopmental defects and other related disorders reported in VPS4A-mutated patients with a fully functional VPS4B paralog.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte , ATPases Vacuolares Próton-Translocadoras , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Células HeLa , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
3.
Nat Rev Mol Cell Biol ; 13(11): 736-42, 2012 11.
Artigo em Inglês | MEDLINE | ID: mdl-23047735

RESUMO

Visualizing the dynamic molecular architecture of cells is instrumental for answering fundamental questions in cellular and structural biology. Although modern microscopy techniques, including fluorescence and conventional electron microscopy, have allowed us to gain insights into the molecular organization of cells, they are limited in their ability to visualize multicomponent complexes in their native environment. Cryo-electron tomography (cryo-ET) allows cells, and the macromolecular assemblies contained within, to be reconstructed in situ, at a resolution of 2-6 nm. By combining cryo-ET with super-resolution fluorescence microscopy approaches, it should be possible to localize proteins with high precision inside cells and so elucidate a more realistic view of cellular processes. Thus, cryo-ET may bridge the resolution gap between cellular and structural biology.


Assuntos
Células/citologia , Células/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Animais , Microscopia Crioeletrônica , Citoesqueleto/ultraestrutura , Tomografia com Microscopia Eletrônica/instrumentação , Adesões Focais/ultraestrutura , Humanos , Substâncias Macromoleculares , Microscopia de Fluorescência , Poro Nuclear/ultraestrutura
4.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33837152

RESUMO

Animal cytokinesis ends with the formation of a thin intercellular membrane bridge that connects the two newly formed sibling cells, which is ultimately resolved by abscission. While mitosis is completed within 15 min, the intercellular bridge can persist for hours, maintaining a physical connection between sibling cells and allowing exchange of cytosolic components. Although cell-cell communication is fundamental for development, the role of intercellular bridges during embryogenesis has not been fully elucidated. In this work, we characterized the spatiotemporal characteristics of the intercellular bridge during early zebrafish development. We found that abscission is delayed during the rapid division cycles that occur in the early embryo, giving rise to the formation of interconnected cell clusters. Abscission was accelerated when the embryo entered the midblastula transition (MBT) phase. Components of the ESCRT machinery, which drives abscission, were enriched at intercellular bridges post-MBT and, interfering with ESCRT function, extended abscission beyond MBT. Hallmark features of MBT, including transcription onset and cell shape modulations, were more similar in interconnected sibling cells compared to other neighboring cells. Collectively, our findings suggest that delayed abscission in the early embryo allows clusters of cells to coordinate their behavior during embryonic development.


Assuntos
Blástula/embriologia , Citocinese , Animais , Blástula/citologia , Blástula/metabolismo , Forma Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
5.
Biophys J ; 121(21): 4229-4238, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36042696

RESUMO

The assembly and budding of newly formed human immunodeficiency virus-1 (HIV-1) particles occur at the plasma membrane of infected cells. Although the molecular basis for viral budding has been studied extensively, investigation of its spatiotemporal characteristics has been limited by the small dimensions (∼100 nm) of HIV particles and the fast kinetics of the process (a few minutes from bud formation to virion release). Here we applied ultra-fast atomic force microscopy to achieve real-time visualization of individual HIV-1 budding events from wild-type (WT) cell lines as well as from mutated lines lacking vacuolar protein sorting-4 (VPS4) or visceral adipose tissue-1 protein (VTA1). Using single-particle analysis, we show that HIV-1 bud formation follows two kinetic pathways (fast and slow) with each composed of three distinct phases (growth, stationary, decay). Notably, approximately 38% of events did not result in viral release and were characterized by the formation of short (rather than tall) particles that slowly decayed back into the cell membrane. These non-productive events became more abundant in VPS4 knockout cell lines. Strikingly, the absence of VPS4B, rather than VPS4A, increased the production of short viral particles, suggesting a role for VPS4B in earlier stages of HIV-1 budding than traditionally thought.


Assuntos
HIV-1 , ATPases Vacuolares Próton-Translocadoras , Humanos , HIV-1/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Montagem de Vírus , Transporte Proteico , ATPases Vacuolares Próton-Translocadoras/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(4): 1235-1240, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30622182

RESUMO

Lysine methylation, catalyzed by protein lysine methyltransferases (PKMTs), is a key player in regulating intracellular signaling pathways. However, the role of PKMTs and the methylation of nonhistone proteins during the cell cycle are largely unexplored. In a recent proteomic screen, we identified that the PKMT SETD6 methylates PLK1-a key regulator of mitosis and highly expressed in tumor cells. In this study, we provide evidence that SETD6 is involved in cell cycle regulation. SETD6-deficient cells were observed to progress faster through the different mitotic steps toward the cytokinesis stage. Mechanistically, we found that during mitosis SETD6 binds and methylates PLK1 on two lysine residues: K209 and K413. Lack of methylation of these two residues results in increased kinase activity of PLK1, leading to accelerated mitosis and faster cellular proliferation, similarly to SETD6-deficient cells. Taken together, our findings reveal a role for SETD6 in regulating mitotic progression, suggesting a pathway through which SETD6 methylation activity contributes to normal mitotic pace.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Mitose/fisiologia , Proteínas Metiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Citocinese/fisiologia , Células HeLa , Humanos , Lisina/metabolismo , Metilação , Proteômica/métodos , Transdução de Sinais/fisiologia , Quinase 1 Polo-Like
7.
BMC Biol ; 18(1): 5, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937312

RESUMO

BACKGROUND: In the high-resolution microscopy era, genetic code expansion (GCE)-based bioorthogonal labeling offers an elegant way for direct labeling of proteins in live cells with fluorescent dyes. This labeling approach is currently not broadly used in live-cell applications, partly because it needs to be adjusted to the specific protein under study. RESULTS: We present a generic, 14-residue long, N-terminal tag for GCE-based labeling of proteins in live mammalian cells. Using this tag, we generated a library of GCE-based organelle markers, demonstrating the applicability of the tag for labeling a plethora of proteins and organelles. Finally, we show that the HA epitope, used as a backbone in our tag, may be substituted with other epitopes and, in some cases, can be completely removed, reducing the tag length to 5 residues. CONCLUSIONS: The GCE-tag presented here offers a powerful, easy-to-implement tool for live-cell labeling of cellular proteins with small and bright probes.


Assuntos
Microscopia de Fluorescência/métodos , Organelas/química , Proteínas/química , Coloração e Rotulagem/métodos , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Organelas/metabolismo , Proteínas/metabolismo
8.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924532

RESUMO

The generation of F-actin bundles is controlled by the action of actin-binding proteins. In Drosophila bristle development, two major actin-bundling proteins-Forked and Fascin-were identified, but still the molecular mechanism by which these actin-bundling proteins and other proteins generate bristle actin bundles is unknown. In this study, we developed a technique that allows recapitulation of bristle actin module organization using the Drosophila ovary by a combination of confocal microscopy, super-resolution structured illumination microscopy, and correlative light and electron microscope analysis. Since Forked generated a distinct ectopic network of actin bundles in the oocyte, the additive effect of two other actin-associated proteins, namely, Fascin and Javelin (Jv), was studied. We found that co-expression of Fascin and Forked demonstrated that the number of actin filaments within the actin bundles dramatically increased, and in their geometric organization, they resembled bristle-like actin bundles. On the other hand, co-expression of Jv with Forked increased the length and density of the actin bundles. When all three proteins co-expressed, the actin bundles were longer and denser, and contained a high number of actin filaments in the bundle. Thus, our results demonstrate that the Drosophila oocyte could serve as a test tube for actin bundle analysis.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Oócitos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Drosophila melanogaster/citologia , Células Germinativas/metabolismo , Oócitos/citologia , Relação Estrutura-Atividade
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 1001-1012, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28652194

RESUMO

Obesity promotes the biogenesis of adipose tissue (AT) foam cells (FC), which contribute to AT insulin resistance. Autophagy, an evolutionarily-conserved house-keeping process, was implicated in cellular lipid handling by either feeding and/or degrading lipid-droplets (LDs). We hypothesized that beyond phagocytosis of dead adipocytes, AT-FC biogenesis is supported by the AT microenvironment by regulating autophagy. Non-polarized ("M0") RAW264.7 macrophages exposed to AT conditioned media (AT-CM) exhibited a markedly enhanced LDs biogenesis rate compared to control cells (8.3 Vs 0.3 LDs/cells/h, p<0.005). Autophagic flux was decreased by AT-CM, and fluorescently following autophagosomes over time revealed ~20% decline in new autophagic vesicles' formation rate, and 60-70% decrease in autophagosomal growth rate, without marked alternations in the acidic lysosomal compartment. Suppressing autophagy by either targeting autophagosome formation (pharmacologically, with 3-methyladenine or genetically, with Atg12±Atg7-siRNA), decreased the rate of LD formation induced by oleic acid. Conversely, interfering with late autophago-lysosomal function, either pharmacologically with bafilomycin-A1, chloroquine or leupeptin, enhanced LD formation in macrophages without affecting LD degradation rate. Similarly enhanced LD biogenesis rate was induced by siRNA targeting Lamp-1 or the V-ATPase. Collectively, we propose that secreted products from AT interrupt late autophagosome maturation in macrophages, supporting enhanced LDs biogenesis and AT-FC formation, thereby contributing to AT dysfunction in obesity.


Assuntos
Tecido Adiposo/fisiologia , Autofagia/fisiologia , Meios de Cultivo Condicionados/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/fisiologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Adipócitos/metabolismo , Adipócitos/fisiologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/fisiologia , Autofagia/efeitos dos fármacos , Linhagem Celular , Gotículas Lipídicas/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/fisiologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Ácido Oleico/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Células RAW 264.7
10.
Proc Natl Acad Sci U S A ; 108(25): 10190-5, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21646527

RESUMO

Mitochondria are highly dynamic organelles that mediate essential cell functions such as apoptosis and cell-cycle control in addition to their role as efficient ATP generators. Mitochondrial morphology changes are tightly regulated, and their shape can shift between small, fragmented units and larger networks of elongated mitochondria. We demonstrate that mitochondrial elements become significantly elongated and interconnected shortly after nutrient depletion. This mitochondrial morphological shift depends on the type of starvation, with an additive effect observed when multiple nutrients are depleted simultaneously. We further show that starvation-induced mitochondrial elongation is mediated by down-regulation of dynamin-related protein 1 (Drp1) through modulation of two Drp1 phosphorylation sites, leading to unopposed mitochondrial fusion. Finally, we establish that mitochondrial tubulation upon nutrient deprivation protects mitochondria from autophagosomal degradation, which could permit mitochondria to maximize energy production and supply autophagosomal membranes during starvation.


Assuntos
Autofagia/fisiologia , Mitocôndrias/metabolismo , Fagossomos/metabolismo , Inanição/metabolismo , Animais , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , Fibroblastos/citologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional
11.
Proc Natl Acad Sci U S A ; 108(12): 4846-51, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383202

RESUMO

The final stage of cytokinesis is abscission, the cutting of the narrow membrane bridge connecting two daughter cells. The endosomal sorting complex required for transport (ESCRT) machinery is required for cytokinesis, and ESCRT-III has membrane scission activity in vitro, but the role of ESCRTs in abscission has been undefined. Here, we use structured illumination microscopy and time-lapse imaging to dissect the behavior of ESCRTs during abscission. Our data reveal that the ESCRT-I subunit tumor-susceptibility gene 101 (TSG101) and the ESCRT-III subunit charged multivesicular body protein 4b (CHMP4B) are sequentially recruited to the center of the intercellular bridge, forming a series of cortical rings. Late in cytokinesis, however, CHMP4B is acutely recruited to the narrow constriction site where abscission occurs. The ESCRT disassembly factor vacuolar protein sorting 4 (VPS4) follows CHMP4B to this site, and cell separation occurs immediately. That arrival of ESCRT-III and VPS4 correlates both spatially and temporally with the abscission event suggests a direct role for these proteins in cytokinetic membrane abscission.


Assuntos
Citocinese/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Cães , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/genética , Humanos , Fatores de Transcrição/genética
12.
Nat Microbiol ; 9(1): 108-119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151647

RESUMO

Gut environments harbour dense microbial ecosystems in which plasmids are widely distributed. Plasmids facilitate the exchange of genetic material among microorganisms while enabling the transfer of a diverse array of accessory functions. However, their precise impact on microbial community composition and function remains largely unexplored. Here we identify a prevalent bacterial toxin and a plasmid-encoded resistance mechanism that mediates the interaction between Lactobacilli and Enterococci. This plasmid is widespread across ecosystems, including the rumen and human gut microbiota. Biochemical characterization of the plasmid revealed a defence mechanism against reuterin, a toxin produced by various gut microbes, such as Limosilactobacillus reuteri. Using a targeted metabolomic approach, we find reuterin to be prevalent across rumen ecosystems with impacts on microbial community structure. Enterococcus strains carrying the protective plasmid were isolated and their interactions with L. reuteri, the toxin producer, were studied in vitro. Interestingly, we found that by conferring resistance against reuterin, the plasmid mediates metabolic exchange between the defending and the attacking microbial species, resulting in a beneficial relationship or mutualism. Hence, we reveal here an ecological role for a plasmid-coded defence system in mediating a beneficial interaction.


Assuntos
Limosilactobacillus reuteri , Simbiose , Humanos , Animais , Ecossistema , Plasmídeos/genética , Propano/metabolismo , Limosilactobacillus reuteri/genética , Enterococcus/genética
13.
Nat Commun ; 14(1): 6208, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798264

RESUMO

Lysine acetylation has been discovered in thousands of non-histone human proteins, including most metabolic enzymes. Deciphering the functions of acetylation is key to understanding how metabolic cues mediate metabolic enzyme regulation and cellular signaling. Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, is acetylated on multiple lysine residues. Using site-specifically acetylated G6PD, we show that acetylation can activate (AcK89) and inhibit (AcK403) G6PD. Acetylation-dependent inactivation is explained by structural studies showing distortion of the dimeric structure and active site of G6PD. We provide evidence for acetylation-dependent K95/97 ubiquitylation of G6PD and Y503 phosphorylation, as well as interaction with p53 and induction of early apoptotic events. Notably, we found that the acetylation of a single lysine residue coordinates diverse acetylation-dependent processes. Our data provide an example of the complex roles of acetylation as a posttranslational modification that orchestrates the regulation of enzymatic activity, posttranslational modifications, and apoptotic signaling.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Humanos , Lisina/metabolismo , Acetilação
14.
ISME J ; 17(1): 117-129, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36221007

RESUMO

The archaeal Asgard superphylum currently stands as the most promising prokaryotic candidate, from which eukaryotic cells emerged. This unique superphylum encodes for eukaryotic signature proteins (ESP) that could shed light on the origin of eukaryotes, but the properties and function of these proteins is largely unresolved. Here, we set to understand the function of an Asgard archaeal protein family, namely the ESCRT machinery, that is conserved across all domains of life and executes basic cellular eukaryotic functions, including membrane constriction during cell division. We find that ESCRT proteins encoded in Loki archaea, express in mammalian and yeast cells, and that the Loki ESCRT-III protein, CHMP4-7, resides in the eukaryotic nucleus in both organisms. Moreover, Loki ESCRT-III proteins associated with chromatin, recruited their AAA-ATPase VPS4 counterpart to organize in discrete foci in the mammalian nucleus, and directly bind DNA. The human ESCRT-III protein, CHMP1B, exhibited similar nuclear properties and recruited both human and Asgard VPS4s to nuclear foci, indicating interspecies interactions. Mutation analysis revealed a role for the N terminal region of ESCRT-III in mediating these phenotypes in both human and Asgard ESCRTs. These findings suggest that ESCRT proteins hold chromatin binding properties that were highly preserved through the billion years of evolution separating Asgard archaea and humans. The conserved chromatin binding properties of the ESCRT membrane remodeling machinery, reported here, may have important implications for the origin of eukaryogenesis.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas de Saccharomyces cerevisiae , Animais , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Saccharomyces cerevisiae/metabolismo , Archaea/genética , Cromatina/genética , Cromatina/metabolismo , Mamíferos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Biophys J ; 102(10): 2309-20, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22677384

RESUMO

The endosomal sorting complex required for transport (ESCRT)-III complex, capable of polymerization and remodeling, participates in abscission of the intercellular membrane bridge connecting two daughter cells at the end of cytokinesis. Here, we integrate quantitative imaging of ESCRT-III during cytokinetic abscission with biophysical properties of ESCRT-III complexes to formulate and test a computational model for ESCRT-mediated cytokinetic abscission. We propose that cytokinetic abscission is driven by an ESCRT-III fission complex, which arises from ESCRT-III polymerization at the edge of the cytokinetic midbody structure, located at the center of the intercellular bridge. Formation of the fission complex is completed by remodeling and breakage of the ESCRT-III polymer assisted by VPS4. Subsequent spontaneous constriction of the fission complex generates bending deformation of the intercellular bridge membrane. The related membrane elastic force propels the fission complex along the intercellular bridge away from the midbody until it reaches an equilibrium position, determining the scission site. Membrane attachment to the dome-like end-cap of the fission complex drives membrane fission, completing the abscission process. We substantiate the model by theoretical analysis of the membrane elastic energy and by experimental verification of the major model assumptions.


Assuntos
Simulação por Computador , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Modelos Biológicos , Polimerização , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Cães , Espaço Extracelular/metabolismo , Humanos , Reprodutibilidade dos Testes , ATPases Vacuolares Próton-Translocadoras/metabolismo
16.
ISME J ; 16(2): 606-610, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34465898

RESUMO

The origin of the eukaryotic cell is a major open question in biology. Asgard archaea are the closest known prokaryotic relatives of eukaryotes, and their genomes encode various eukaryotic signature proteins, indicating some elements of cellular complexity prior to the emergence of the first eukaryotic cell. Yet, microscopic evidence to demonstrate the cellular structure of uncultivated Asgard archaea in the environment is thus far lacking. We used primer-free sequencing to retrieve 715 almost full-length Loki- and Heimdallarchaeota 16S rRNA sequences and designed novel oligonucleotide probes to visualize their cells in marine sediments (Aarhus Bay, Denmark) using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Super-resolution microscopy revealed 1-2 µm large, coccoid cells, sometimes occurring as aggregates. Remarkably, the DNA staining was spatially separated from ribosome-originated FISH signals by 50-280 nm. This suggests that the genomic material is condensed and spatially distinct in a particular location and could indicate compartmentalization or membrane invagination in Asgard archaeal cells.


Assuntos
Archaea , Ribossomos , Archaea/genética , Archaea/metabolismo , DNA , DNA Arqueal/genética , Genoma Arqueal , Hibridização in Situ Fluorescente , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ribossomos/genética
17.
Science ; 376(6599): eabh3104, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35549308

RESUMO

A hallmark of meiosis is chromosomal pairing, which requires telomere tethering and rotation on the nuclear envelope through microtubules, driving chromosome homology searches. Telomere pulling toward the centrosome forms the "zygotene chromosomal bouquet." Here, we identified the "zygotene cilium" in oocytes. This cilium provides a cable system for the bouquet machinery and extends throughout the germline cyst. Using zebrafish mutants and live manipulations, we demonstrate that the cilium anchors the centrosome to counterbalance telomere pulling. The cilium is essential for bouquet and synaptonemal complex formation, oogenesis, ovarian development, and fertility. Thus, a cilium represents a conserved player in zebrafish and mouse meiosis, which sheds light on reproductive aspects in ciliopathies and suggests that cilia can control chromosomal dynamics.


Assuntos
Pareamento Cromossômico , Cílios , Oócitos , Oogênese , Ovário , Animais , Centrômero/genética , Centrômero/fisiologia , Pareamento Cromossômico/genética , Pareamento Cromossômico/fisiologia , Cílios/fisiologia , Feminino , Fertilidade/fisiologia , Camundongos , Morfogênese , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Oogênese/fisiologia , Ovário/crescimento & desenvolvimento , Telômero/genética , Telômero/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
18.
FEBS J ; 288(4): 1107-1117, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32640070

RESUMO

Twenty-five years ago, GFP revolutionized the field of cell biology by enabling scientists to visualize, for the first time, proteins in living cells. However, when it comes to current, state-of-the-art imaging technologies, fluorescent proteins (such as GFP) have several limitations that result from their size and photophysics. Over the past decade, an elegant, alternative approach, which is based on the direct labeling of proteins with fluorescent dyes and is compatible with live-cell and super-resolution imaging applications, has been introduced. In this approach, an unnatural amino acid that can covalently bind a fluorescent dye is incorporated into the coding sequence of a protein. The protein of interest is thereby site-specifically fluorescently labeled inside the cell, eliminating the need for protein- or peptide-labeling tags. Whether this labeling approach will change cell biology research is currently unclear, but it clearly has the potential to do so. In this short review, a general overview of this approach is provided, focusing on the imaging of site-specifically labeled proteins in mammalian tissue culture cells, and highlighting its advantages and limitations for cellular imaging.


Assuntos
Aminoácidos/química , Corantes Fluorescentes/química , Imagem Óptica/métodos , Proteínas/química , Coloração e Rotulagem/métodos , Aminoácidos/metabolismo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Proteínas/metabolismo
19.
J Cell Biol ; 171(3): 517-26, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16260498

RESUMO

Drosophila melanogaster photoreceptor cells are capable of detecting single photons. This utmost sensitivity is critically dependent on the maintenance of an exceedingly low, dark, spontaneous activity of photoreceptor cells. However, the underlying mechanisms of this hallmark of phototransduction are not fully understood. An analysis of the Drosophila visual heterotrimeric (alphabetagamma) Gq protein revealed that wild-type Drosophila flies have about a twofold excess of Gbeta over Galpha subunits of the visual Gq protein. Studies of Gbetae mutants in which the excess of Gbeta was genetically eliminated showed dramatic dark, spontaneous activity of the photoreceptor cells, whereas concurrent genetic reduction of the Galpha subunit, which restored the excess of Gbeta, abolished this effect. These results indicate that an excess of Gbeta over Galpha is a strategy used in vivo for the suppression of spontaneous activity, thereby yielding a high signal to noise ratio, which is characteristic of the photoreceptor light response. This mechanism could be relevant to the regulation of G protein signaling in general.


Assuntos
Drosophila/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Membrana Celular/fisiologia , Dimerização , Drosophila/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Luz , Mutação , Rodopsina/metabolismo , Transdução de Sinais
20.
Nanoscale ; 12(35): 18476-18477, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32941588

RESUMO

Correction for 'Live cell single molecule tracking and localization microscopy of bioorthogonally labeled plasma membrane proteins' by Andres I. König et al., Nanoscale, 2020, 12, 3236-3248, DOI: 10.1039/C9NR08594G.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa