Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 298(9): 102295, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872015

RESUMO

The chromatin-associated high mobility group protein N2 (HMGN2) cofactor regulates transcription factor activity through both chromatin and protein interactions. Hmgn2 expression is known to be developmentally regulated, but the post-transcriptional mechanisms that regulate Hmgn2 expression and its precise roles in tooth development remain unclear. Here, we demonstrate that HMGN2 inhibits the activity of multiple transcription factors as a general mechanism to regulate early development. Bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays show that HMGN2 interacts with the transcription factor Lef-1 through its HMG-box domain as well as with other early development transcription factors, Dlx2, FoxJ1, and Pitx2. Furthermore, EMSAs demonstrate that HMGN2 binding to Lef-1 inhibits its DNA-binding activity. We found that Pitx2 and Hmgn2 associate with H4K5ac and H3K4me2 chromatin marks in the proximal Dlx2 promoter, demonstrating Hmgn2 association with open chromatin. In addition, we demonstrate that microRNAs (miRs) mir-23a and miR-23b directly target Hmgn2, promoting transcriptional activation at several gene promoters, including the amelogenin promoter. In vivo, we found that decreased Hmgn2 expression correlates with increased miR-23 expression in craniofacial tissues as the murine embryo develops. Finally, we show that ablation of Hmgn2 in mice results in increased amelogenin expression because of increased Pitx2, Dlx2, Lef-1, and FoxJ1 transcriptional activity. Taken together, our results demonstrate both post-transcriptional regulation of Hmgn2 by miR-23a/b and post-translational regulation of gene expression by Hmgn2-transcription factor interactions. We conclude that HMGN2 regulates tooth development through its interaction with multiple transcription factors.


Assuntos
Amelogênese , Regulação da Expressão Gênica , Proteína HMGN2 , Proteínas de Homeodomínio , Fator 1 de Ligação ao Facilitador Linfoide , Fatores de Transcrição , Transcrição Gênica , Amelogênese/genética , Amelogenina/genética , Animais , Cromatina/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
2.
Development ; 147(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32439755

RESUMO

Epithelial signaling centers control epithelial invagination and organ development, but how these centers are specified remains unclear. We report that Pitx2 (the first transcriptional marker for tooth development) controls the embryonic formation and patterning of epithelial signaling centers during incisor development. We demonstrate using Krt14Cre /Pitx2flox/flox (Pitx2cKO ) and Rosa26CreERT/Pitx2flox/flox mice that loss of Pitx2 delays epithelial invagination, and decreases progenitor cell proliferation and dental epithelium cell differentiation. Developmentally, Pitx2 regulates formation of the Sox2+ labial cervical loop (LaCL) stem cell niche in concert with two signaling centers: the initiation knot and enamel knot. The loss of Pitx2 disrupted the patterning of these two signaling centers, resulting in tooth arrest at E14.5. Mechanistically, Pitx2 transcriptional activity and DNA binding is inhibited by Sox2, and this interaction controls gene expression in specific Sox2 and Pitx2 co-expression progenitor cell domains. We demonstrate new transcriptional mechanisms regulating signaling centers by Pitx2, Sox2, Lef1 and Irx1.


Assuntos
Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Esmalte Dentário/metabolismo , Embrião de Mamíferos/metabolismo , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Camundongos , Camundongos Knockout , Odontogênese , Fatores de Transcrição SOXB1/genética , Nicho de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Dente/citologia , Dente/crescimento & desenvolvimento , Dente/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteínas de Sinalização YAP , Proteína Homeobox PITX2
3.
Stem Cells ; 39(6): 761-775, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33529466

RESUMO

The murine lower incisor ectodermal organ contains a single epithelial stem cell (SC) niche that provides epithelial progenitor cells to the continuously growing rodent incisor. The dental stem cell niche gives rise to several cell types and we demonstrate that the miR-200 family regulates these cell fates. The miR-200 family is highly enriched in the differentiated dental epithelium and absent in the stem cell niche. In this study, we inhibited the miR-200 family in developing murine embryos using new technology, resulting in an expanded epithelial stem cell niche and lack of cell differentiation. Inhibition of individual miRs within the miR-200 cluster resulted in differential developmental and cell morphology defects. miR-200 inhibition increased the expression of dental epithelial stem cell markers, expanded the stem cell niche and decreased progenitor cell differentiation. RNA-seq. identified miR-200 regulatory pathways involved in cell differentiation and compartmentalization of the stem cell niche. The miR-200 family regulates signaling pathways required for cell differentiation and cell cycle progression. The inhibition of miR-200 decreased the size of the lower incisor due to increased autophagy and cell death. New miR-200 targets demonstrate gene networks and pathways controlling cell differentiation and maintenance of the stem cell niche. This is the first report demonstrating how the miR-200 family is required for in vivo progenitor cell proliferation and differentiation.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , MicroRNAs/genética , Nicho de Células-Tronco/genética , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , MicroRNAs/metabolismo , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo
4.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628416

RESUMO

This study was carried out to quantitate the expression levels of microRNA-17, -19a, -34a, -155, and -210 (miRs) expressed in nine clear cell renal cell carcinoma (ccRCC) and one chromophobe renal cell carcinoma cell line with and without sarcomatoid differentiation, and in six primary kidney tumors with matching normal kidney tissues. The data in the five non-sarcomatoid ccRCC cell lines-RC2, CAKI-1, 786-0, RCC4, and RCC4/VHL-and in the four ccRCC with sarcomatoid differentiation-RCJ41T1, RCJ41T2, RCJ41M, and UOK-127-indicated that miR-17 and -19a were expressed at lower levels relative to miR-34a, -155, and -210. Compared with RPTEC normal epithelial cells, miR-34a, miR-155, and miR-210 were expressed at higher levels, independent of the sarcomatoid differentiation status and hypoxia-inducible factors 1α and 2α (HIFs) isoform expression. In the one chromophobe renal cell carcinoma cell line, namely, UOK-276 with sarcomatoid differentiation, and expressing tumor suppressor gene TP53, miR-34a, which is a tumor suppressor gene, was expressed at higher levels than miR-210, -155, -17, and -19a. The pilot results generated in six tumor biopsies with matching normal kidney tissues indicated that while the expression of miR-17 and -19a were similar to the normal tissue expression profile, miR-210, -155, -and 34a were expressed at a higher level. To confirm that differences in the expression levels of the five miRs in the six tumor biopsies were statistically significant, the acquisition of a larger sample size is required. Data previously generated in ccRCC cell lines demonstrating that miR-210, miR-155, and HIFs are druggable targets using a defined dose and schedule of selenium-containing molecules support the concept that simultaneous and concurrent downregulation of miR-210, miR-155, and HIFs, which regulate target genes associated with increased tumor angiogenesis and drug resistance, may offer the potential for the development of a novel mechanism-based strategy for the treatment of patients with advanced ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Biópsia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/metabolismo , MicroRNAs/metabolismo
5.
Dev Biol ; 458(2): 246-256, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31765609

RESUMO

In this study, we investigated the role of the transcription factor Six2 in palate development. Six2 was selected using the SysFACE tool to predict genes from the 2p21 locus, a region associated with clefting in humans by GWAS, that are likely to be involved in palatogenesis. We functionally validated the predicted role of Six2 in palatogenesis by showing that 22% of Six2 null embryos develop cleft palate. Six2 contributes to palatogenesis by promoting mesenchymal cell proliferation and regulating bone formation. The clefting phenotype in Six2-/- embryos is similar to Pax9 null embryos, so we examined the functional relationship of these two genes. Mechanistically, SIX2 binds to a PAX9 5' upstream regulatory element and activates PAX9 expression. In addition, we identified a human SIX2 coding variant (p.Gly264Glu) in a proband with cleft palate. We show this missense mutation affects the stability of the SIX2 protein and leads to decreased PAX9 expression. The low penetrance of clefting in the Six2 null mouse combined with the mutation in one patient with cleft palate underscores the potential combinatorial interactions of other genes in clefting. Our study demonstrates that Six2 interacts with the developmental gene regulatory network in the developing palate.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fator de Transcrição PAX9/genética , Fatores de Transcrição/metabolismo , Animais , Fissura Palatina/embriologia , Fissura Palatina/genética , Anormalidades Craniofaciais/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese , Proteínas do Tecido Nervoso/metabolismo , Osteogênese , Fator de Transcrição PAX9/metabolismo , Fatores de Transcrição Box Pareados , Palato/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética
6.
PLoS Genet ; 14(10): e1007675, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30286078

RESUMO

The mechanisms that regulate post-natal growth of the craniofacial complex and that ultimately determine the size and shape of our faces are not well understood. Hippo signaling is a general mechanism to control tissue growth and organ size, and although it is known that Hippo signaling functions in neural crest specification and patterning during embryogenesis and before birth, its specific role in postnatal craniofacial growth remains elusive. We have identified the transcription factor FoxO6 as an activator of Hippo signaling regulating neonatal growth of the face. During late stages of mouse development, FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull. Enlargement of the mandible and maxilla and lengthening of the incisors in FoxO6-/- mice are associated with increases in cell proliferation. In vitro and in vivo studies demonstrated that FoxO6 activates Lats1 expression, thereby increasing Yap phosphorylation and activation of Hippo signaling. FoxO6-/- mice have significantly reduced Hippo Signaling caused by a decrease in Lats1 expression and decreases in Shh and Runx2 expression, suggesting that Shh and Runx2 are also linked to Hippo signaling. In vitro, FoxO6 activates Hippo reporter constructs and regulates cell proliferation. Furthermore PITX2, a regulator of Hippo signaling is associated with Axenfeld-Rieger Syndrome causing a flattened midface and we show that PITX2 activates FoxO6 expression. Craniofacial specific expression of FoxO6 postnatally regulates Hippo signaling and cell proliferation. Together, these results identify a FoxO6-Hippo regulatory pathway that controls skull growth, odontogenesis and face morphology.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Desenvolvimento Maxilofacial/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Crânio/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Via de Sinalização Hippo , Proteínas de Homeodomínio/metabolismo , Desenvolvimento Maxilofacial/genética , Camundongos , Crista Neural/citologia , Tamanho do Órgão , Fosforilação , Transdução de Sinais , Crânio/metabolismo , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
7.
Development ; 143(22): 4115-4126, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27660324

RESUMO

Sox2 marks dental epithelial stem cells (DESCs) in both mammals and reptiles, and in this article we demonstrate several Sox2 transcriptional mechanisms that regulate dental stem cell fate and incisor growth. Conditional Sox2 deletion in the oral and dental epithelium results in severe craniofacial defects, including impaired dental stem cell proliferation, arrested incisor development and abnormal molar development. The murine incisor develops initially but is absorbed independently of apoptosis owing to a lack of progenitor cell proliferation and differentiation. Tamoxifen-induced inactivation of Sox2 demonstrates the requirement of Sox2 for maintenance of the DESCs in adult mice. Conditional overexpression of Lef-1 in mice increases DESC proliferation and creates a new labial cervical loop stem cell compartment, which produces rapidly growing long tusk-like incisors, and Lef-1 epithelial overexpression partially rescues the tooth arrest in Sox2 conditional knockout mice. Mechanistically, Pitx2 and Sox2 interact physically and regulate Lef-1, Pitx2 and Sox2 expression during development. Thus, we have uncovered a Pitx2-Sox2-Lef-1 transcriptional mechanism that regulates DESC homeostasis and dental development.


Assuntos
Autorrenovação Celular/genética , Proteínas de Homeodomínio , Incisivo/embriologia , Fator 1 de Ligação ao Facilitador Linfoide , Odontogênese/genética , Fatores de Transcrição SOXB1 , Células-Tronco/fisiologia , Fatores de Transcrição , Animais , Células Cultivadas , Embrião de Mamíferos , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Incisivo/crescimento & desenvolvimento , Incisivo/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
8.
Dev Biol ; 429(1): 44-55, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28746823

RESUMO

The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1-/- mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development.


Assuntos
Células Epiteliais Alveolares/citologia , Diferenciação Celular , Esmalte Dentário/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Animais Recém-Nascidos , Cruzamentos Genéticos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Incisivo/embriologia , Incisivo/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Ratos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética
9.
Hum Mol Genet ; 24(8): 2330-48, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25556186

RESUMO

T-box transcription factor TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS, DiGeorge syndrome/Velo-cardio-facial syndrome), whose phenotypes include craniofacial malformations such as dental defects and cleft palate. In this study, Tbx1 was conditionally deleted or over-expressed in the oral and dental epithelium to establish its role in odontogenesis and craniofacial developmental. Tbx1 lineage tracing experiments demonstrated a specific region of Tbx1-positive cells in the labial cervical loop (LaCL, stem cell niche). We found that Tbx1 conditional knockout (Tbx1(cKO)) mice featured microdontia, which coincides with decreased stem cell proliferation in the LaCL of Tbx1(cKO) mice. In contrast, Tbx1 over-expression increased dental epithelial progenitor cells in the LaCL. Furthermore, microRNA-96 (miR-96) repressed Tbx1 expression and Tbx1 repressed miR-96 expression, suggesting that miR-96 and Tbx1 work in a regulatory loop to maintain the correct levels of Tbx1. Cleft palate was observed in both conditional knockout and over-expression mice, consistent with the craniofacial/tooth defects associated with TBX1 deletion and the gene duplication that leads to 22q11.2DS. The biochemical analyses of TBX1 human mutations demonstrate functional differences in their transcriptional regulation of miR-96 and co-regulation of PITX2 activity. TBX1 interacts with PITX2 to negatively regulate PITX2 transcriptional activity and the TBX1 N-terminus is required for its repressive activity. Overall, our results indicate that Tbx1 regulates the proliferation of dental progenitor cells and craniofacial development through miR-96-5p and PITX2. Together, these data suggest a new molecular mechanism controlling pathogenesis of dental anomalies in human 22q11.2DS.


Assuntos
Proliferação de Células , Síndrome de DiGeorge/metabolismo , Ossos Faciais/metabolismo , MicroRNAs/metabolismo , Proteínas com Domínio T/metabolismo , Dente/metabolismo , Animais , Anormalidades Craniofaciais , Síndrome de DiGeorge/embriologia , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/fisiopatologia , Ossos Faciais/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , MicroRNAs/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas com Domínio T/genética , Dente/embriologia
10.
Biology (Basel) ; 12(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36979085

RESUMO

A mesiodens is a supernumerary tooth located in the midline of the premaxilla. To investigate the genetic cause of mesiodens, clinical and radiographic examination were performed on 23 family members of a two-generation Hmong family. Whole exome sequencing (WES) or Sanger sequencing were performed in 22 family members and two unrelated Thai patients with mesiodens. WES in the Hmong family revealed a missense mutation (c.1807G>A;p.Glu603Lys) in PTPN23 in seven affected members and six unaffected members. The mode of inheritance was autosomal dominance with incomplete penetrance (53.84%). Two additional mutations in PTPN23, c.2248C>G;p.Pro750Ala and c.3298C>T;p.Arg1100Cys were identified in two unrelated patients with mesiodens. PTPN23 is a regulator of endosomal trafficking functioning to move activated membrane receptors, such as EGFR, from the endosomal sorting complex towards the ESCRT-III complex for multivesicular body biogenesis, lysosomal degradation, and subsequent downregulation of receptor signaling. Immunohistochemical study and RNAscope on developing mouse embryos showed broad expression of PTPN23 in oral tissues, while immunofluorescence showed that EGFR was specifically concentrated in the midline epithelium. Importantly, PTPN23 mutant protein was shown to have reduced phosphatase activity. In conclusion, mesiodens were associated with genetic variants in PTPN23, suggesting that mesiodens may form due to defects in endosomal trafficking, leading to disrupted midline signaling.

11.
Exp Dermatol ; 21(8): 605-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22775995

RESUMO

Collagen XVII (COL17), a transmembrane protein expressed in epidermal keratinocytes (EK), is targeted by pathogenic autoantibodies in bullous pemphigoid. Treatment of EK with anti-COL17 autoantibodies triggers the production of proinflammatory cytokines. In this study, we test the hypothesis that COL17 is involved in the regulation of the EK proinflammatory response, using IL-8 expression as the primary readout. The absence of COL17 in EK derived from a junctional epidermolysis bullosa patient or shRNA-mediated knockdown of COL17 in normal EK resulted in a dysregulation of IL-8 responses under various conditions. The COL17-deficient cells showed an abnormally high IL-8 response after treatment with lipopolysaccharide (LPS), ultraviolet-B radiation or tumor necrosis factor, but exhibited a blunted IL-8 response to phorbol 12-myristate 13-acetate exposure. Induction of COL17 expression in COL17-negative EK led to a normalization of the LPS-induced proinflammatory response. Although α6ß4 integrin was found to be up-regulated in COL17-deficient EK, siRNA-mediated knockdown of the α6 and ß4 subunits revealed that COL17's effects on the LPS IL-8 response are not dependent on this integrin. In LPS-treated cells, inhibition of NF-kappa B activity in COL17-negative EK resulted in a normalization of their IL-8 response, and expression of an NF-kappa B-driven reporter was shown to be higher in COL17-deficient, compared with normal EK. These findings support the hypothesis that COL17 plays an important regulatory role in the EK proinflammatory response, acting largely via NF-kappa B. Future investigations will focus on further defining the molecular basis of this novel control network.


Assuntos
Autoantígenos/metabolismo , Epidermólise Bolhosa/metabolismo , Inflamação/metabolismo , Interleucina-18/metabolismo , Queratinócitos/metabolismo , Colágenos não Fibrilares/metabolismo , Autoantígenos/genética , Linhagem Celular , Epidermólise Bolhosa/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Integrina alfa6beta4/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Colágenos não Fibrilares/deficiência , Colágenos não Fibrilares/genética , RNA Interferente Pequeno/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Raios Ultravioleta , Colágeno Tipo XVII
12.
Clin Transl Med ; 12(9): e1037, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36116139

RESUMO

BACKGROUND: Colorectal cancer (CRC) has a high mortality rate, and therapeutic approaches to treat these cancers are varied and depend on the metabolic state of the tumour. Profiles of CRC tumours have identified several biomarkers, including microRNAs. microRNA-210 (miR-210) levels are directly correlated with CRC survival. miR-210 expression is higher in metastatic colon cancer cells versus non-metastatic and normal colon epithelium. Therefore, efficient methods to inhibit miR-210 expression in CRC may provide new advances in treatments. METHODS: Expression of miRs was determined in several metastatic and non-metastatic cell lines. miR-210 expression was inhibited using PMIS-miR-210 in transduced cells, which were transplanted into xenograft mice. In separate experiments, CRC tumours were allowed to grow in xenograft mice and treated with therapeutic injections of PMIS-miR-210. Molecular and biochemical experiments identified several new pathways targeted by miR-210 inhibition. RESULTS: miR-210 inhibition can significantly reduce tumour growth of implanted colon cancer cells in xenograft mouse models. The direct administration of PMIS-miR-210 to existing tumours can inhibit tumour growth in both NSG and Foxn1nu/j mouse models and is more efficacious than capecitabine treatments. Tumour cells further transfer the PMIS-miR-210 inhibitor to neighbouring cells by extracellular vesicles to inhibit miR-210 throughout the tumour. miR-210 inhibition activates the cleaved caspase 3 apoptotic pathway to reduce tumour formation. We demonstrate that the long non-coding transcript XIST is regulated by miR-210 correlating with decreased XIST expression in CRC tumours. XIST acts as a competing endogenous RNA for miR-210, which reduces XIST levels and miR-210 inhibition increases XIST transcripts in the nucleus and cytoplasm. The increased expression of NME1 is associated with H3K4me3 and H3K27ac modifications in the NME1 proximal promoter by XIST. CONCLUSION: Direct application of the PMIS-miR-210 inhibitor to growing tumours may be an effective colorectal cancer therapeutic.


Assuntos
Neoplasias do Colo , Vesículas Extracelulares , MicroRNAs , Nucleosídeo NM23 Difosfato Quinases , RNA Longo não Codificante , Animais , Apoptose/genética , Capecitabina , Caspase 3 , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
13.
Nat Med ; 10(8): 816-20, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15235598

RESUMO

The dominant polyglutamine expansion diseases, which include spinocerebellar ataxia type 1 (SCA1) and Huntington disease, are progressive, untreatable, neurodegenerative disorders. In inducible mouse models of SCA1 and Huntington disease, repression of mutant allele expression improves disease phenotypes. Thus, therapies designed to inhibit expression of the mutant gene would be beneficial. Here we evaluate the ability of RNA interference (RNAi) to inhibit polyglutamine-induced neurodegeneration caused by mutant ataxin-1 in a mouse model of SCA1. Upon intracerebellar injection, recombinant adeno-associated virus (AAV) vectors expressing short hairpin RNAs profoundly improved motor coordination, restored cerebellar morphology and resolved characteristic ataxin-1 inclusions in Purkinje cells of SCA1 mice. Our data demonstrate in vivo the potential use of RNAi as therapy for dominant neurodegenerative disease.


Assuntos
Expressão Gênica , Degeneração Neural/genética , Degeneração Neural/terapia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Interferência de RNA/fisiologia , RNA Mensageiro/metabolismo , Ataxias Espinocerebelares/patologia , Adenoviridae , Animais , Ataxina-1 , Ataxinas , Northern Blotting , Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Glutamina , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/farmacologia , Proteínas Nucleares/farmacologia , Plasmídeos/genética , Desempenho Psicomotor/efeitos dos fármacos , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução Genética
14.
Mol Ther Nucleic Acids ; 26: 1148-1158, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34853714

RESUMO

Anaplastic thyroid cancer (ATC) is an aggressive, highly metastatic cancer that expresses high levels of the microRNA (miR)-17-92 cluster. We employ an miR inhibitor system to study the function of the different miRs within the miR-17-92 cluster based on seed sequence homology in the ATC SW579 cell line. While three of the four miR-17-92 families were oncogenic, we uncovered a novel role for miR-17 as a tumor suppressor in vitro and in vivo. Surprisingly, miR-17 inhibition increased expression of the miR-17-92 cluster and significantly increased the levels of the miR-18a and miR-19a mature miRs. miR-17 inhibition increased expression of the cell cycle activator CCND2, associated with increased cell proliferation and tumor growth in transplanted SW579 cells in xenograft mice. miR-17 regulates MYCN and c-MYC expression in SW579 cells, and the inhibition of miR-17 increased MYCN and c-MYC expression, which increased pri-miR-17-92 transcripts. Thus, inhibition of miR-17 activated the expression of the oncogenic miRs, miR-18a and miR-19a. While many cancers express high levels of miR-17, linking it with tumorigenesis, we demonstrate that miR-17 inhibition does not inhibit thyroid tumor growth in SW579 and MDA-T32 ATC cells but increases expression of the other miR-17-92 family members and genes to induce cancer progression.

15.
Mol Ther Nucleic Acids ; 23: 1204-1216, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33664998

RESUMO

The present study was conducted to characterize microRNA-200c (miR-200c) and its regulators in adipogenic differentiation, obesity, and periodontitis in obese subjects (PiOSs), and to determine the therapeutic efficacy of plasmid DNA encoding miR-200c as a treatment for PiOSs. We report that highly expressed miR-200c in gingival tissues was downregulated in diet-induced obese (DIO) mice and during adipogenic differentiation of human bone marrow mesenchymal stromal cells (hBMSCs). Local injection of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) in the maxilla interdental gingiva of DIO mice reduced miR-200c in gingival and adipose tissues and induced periodontal inflammation associated with systemic elevation of interleukin-6 (IL-6) and impaired glucose tolerance. The inhibitory functions of Pg-LPS and IL-6 on miR-200c and their effectiveness on Zeb1 were confirmed in vitro. Injection of naked plasmid DNA encoding miR-200c into the gingiva effectively rescued miR-200c downregulation, prevented periodontal and systemic inflammation, and alleviated the impaired glucose metabolism in obese mice with LPS-induced periodontitis. Increased circulating exosomal miR-200c and its function on suppressing proinflammatory cytokines and adipogenesis explained the mechanism(s) of gingival application of miR-200c in attenuating systemic inflammation in PiOSs. These results demonstrated that miR-200c reduced by Pg-LPS and IL-6 in periodontitis and obesity might lead to the pathogenesis of PiOSs, and upregulation of miR-200c in the gingiva presents a therapeutic approach for PiOSs.

16.
ACS Biomater Sci Eng ; 7(9): 4521-4534, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34437807

RESUMO

Advanced fabrication methods for bone grafts designed to match defect sites that combine biodegradable, osteoconductive materials with potent, osteoinductive biologics would significantly impact the clinical treatment of large bone defects. In this study, we engineered synthetic bone grafts using a hybrid approach that combined three-dimensional (3D-)printed biodegradable, osteoconductive ß-tricalcium phosphate (ß-TCP) with osteoinductive microRNA(miR)-200c. 3D-printed ß-TCP scaffolds were fabricated utilizing a suspension-enclosing projection-stereolithography (SEPS) process to produce constructs with reproducible microarchitectures that enhanced the osteoconductive properties of ß-TCP. Collagen coating on 3D-printed ß-TCP scaffolds slowed the release of plasmid DNA encoding miR-200c compared to noncoated constructs. 3D-printed ß-TCP scaffolds coated with miR-200c-incorporated collagen increased the transfection efficiency of miR-200c of both rat and human BMSCs and additionally increased osteogenic differentiation of hBMSCs in vitro. Furthermore, miR-200c-incorporated scaffolds significantly enhanced bone regeneration in critical-sized rat calvarial defects. These results strongly indicate that bone grafts combining SEPS 3D-printed osteoconductive biomaterial-based scaffolds with osteoinductive miR-200c can be used as superior bone substitutes for the clinical treatment of large bone defects.


Assuntos
MicroRNAs , Osteogênese , Animais , Regeneração Óssea , Fosfatos de Cálcio , MicroRNAs/genética , Impressão Tridimensional , Ratos , Alicerces Teciduais
17.
Hum Gene Ther ; 30(11): 1405-1418, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31288577

RESUMO

MicroRNA (miR)-200c functions in antitumorigenesis and mediates inflammation and osteogenic differentiation. In this study, we discovered that miR-200c was upregulated in human bone marrow mesenchymal stromal cells (hBMSCs) during osteogenic differentiation. Inhibition of endogenous miR-200c resulted in downregulated osteogenic differentiation of hBMSCs and reduced bone volume in the maxilla and mandible of a transgenic mouse model. Overexpression of miR-200c by transfection of naked plasmid DNA (pDNA) encoding miR-200c significantly promoted the biomarkers of osteogenic differentiation in hBMSCs, including alkaline phosphatase, Runt-related transcription factor 2, osteocalcin, and mineral deposition. The pDNA encoding miR-200c also significantly enhanced bone formation and regeneration in calvarial defects of rat models. In addition, miR-200c overexpression was shown to downregulate SRY (sex determining region Y)-box 2 (Sox2) and Kruppel-like factor 4 by directly targeting 3'-untranslated regions and upregulate the activity of Wnt signaling inhibited by Sox2. These results strongly indicated that miR-200c may serve as a unique osteoinductive agent applied for bone healing and regeneration.


Assuntos
Regeneração Óssea/genética , Diferenciação Celular/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Osteogênese/genética , Fatores de Transcrição SOXB1/metabolismo , Via de Sinalização Wnt/genética , Animais , Sequência de Bases , DNA/genética , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Transgênicos , MicroRNAs/genética , Modelos Biológicos , Plasmídeos/genética , Ratos Sprague-Dawley , Fatores de Transcrição SOXB1/genética , Crânio/patologia
18.
Stem Cells Dev ; 28(15): 1026-1036, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31017046

RESUMO

This study tested whether microRNA (miR)-200c can attenuate the inflammation and alveolar bone resorption in periodontitis by using an in vitro and a rat model. Polyethylenimine (PEI) was used to facilitate the transfection of plasmid DNA encoding miR-200c into primary human gingival fibroblasts (HGFs) and gingival tissues of rats. We first analyzed how proinflammatory and osteoclastogenic mediators in HGFs with overexpression of miR-200c responded to Porphyromonas gingivalis lipopolysaccharide (LPS-PG) challenge in vitro. We observed that overexpression of miR-200c significantly reduced interleukin (IL)-6 and 8 and repressed interferon-related developmental regulator-1 (IFRD1) in HGFs. miR-200c also downregulated p65 and p50. In a rat model of periodontitis induced by an LPS injection at the gingival sulcus of the second maxillary molar (M2), we analyzed how the mediators in rat gingiva and alveolar bone resorption responded to miR-200c treatment by a local injection of PEI-plasmid miR-200 nanoplexes. We observed that the local injection of miR-200c significantly upregulated miR-200c expression in gingiva and reduced IL-6, IL-8, IFRD1, and the ratio of receptor activator of nuclear factor kappa-B ligand/osteoprotegerin. Using micro-computed tomography analysis and histomorphometry, we further confirmed that local treatment with miR-200c effectively protected alveolar bone resorption in the rat model of periodontitis by reducing the distance between the cemento-enamel junction and the alveolar bone crest and the inter-radicular space in the upper maxilla at M2. These findings imply that miR-200c may serve as a unique means to prevent periodontitis and associated bone loss.


Assuntos
Mediadores da Inflamação/metabolismo , Inflamação/genética , MicroRNAs/fisiologia , Osteogênese/genética , Periodontite/genética , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/patologia , Animais , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Periodontite/induzido quimicamente , Periodontite/metabolismo , Periodontite/patologia , Ratos , Ratos Sprague-Dawley
19.
Front Genet ; 10: 800, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616463

RESUMO

The etiology of dental anomalies is multifactorial; and genetic and environmental factors that affect the dental lamina have been implicated. We investigated two families of European ancestry in which males were affected by taurodontism, microdontia and dens invaginatus. In both families, males were related to each other via unaffected females. A linkage analysis was conducted in a New Zealand family, followed by exome sequencing and focused analysis of the X-chromosome. In a US family, exome sequencing of the X-chromosome was followed by Sanger sequencing to conduct segregation analyses. We identified two independent missense variants in KIF4A that segregate in affected males and female carriers. The variant in a New Zealand family (p.Asp371His) predicts the substitution of a residue in the motor domain of the protein while the one in a US family (p.Arg771Lys) predicts the substitution of a residue in the domain that interacts with Protein Regulator of Cytokinesis 1 (PRC1). We demonstrated that the gene is expressed in the developing tooth bud during development, and that the p.Arg771Lys variant influences cell migration in an in vitro assay. These data implicate missense variations in KIF4A in a pathogenic mechanism that causes taurodontism, microdontia and dens invaginatus phenotypes.

20.
J Neurosci ; 27(37): 9826-34, 2007 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-17855597

RESUMO

Juvenile neuronal ceroid lipofuscinosis is a severe inherited neurodegenerative disease resulting from mutations in CLN3 (ceroid-lipofuscinosis, neuronal 3, juvenile). CLN3 function, and where and when it is expressed during development, is not known. In this study, we generated a knock-in reporter mouse to elucidate CLN3 expression during embryogenesis and after birth and to correlate expression and behavior in a CLN3-deficient mouse. In embryonic brain, expression appeared in the cortical plate. In postnatal brain, expression was prominent in the cortex, subiculum, parasubiculum, granule neurons of the dentate gyrus, and some brainstem nuclei. In adult brain, reporter gene expression waned in most areas but remained in vascular endothelia and the dentate gyrus. Mice homozygous for Cln3 deletion showed two hallmark pathological features of the neuronal ceroid lipofuscinosises: autofluorescent inclusions and lysosomal enzyme elevation. Moreover, CLN3-deficient reporter mice displayed progressive neurological deficits, including impaired motor function, decreased overall activity, acquisition of resting tremors, and increased susceptibility to pentilentetrazole-induced seizures. Notably, seizure induction in heterozygous mice was accompanied by enhanced reporter expression. This model provides us with the unique ability to correlate expression with pathology and behavior, thus facilitating the elucidation of CLN3 function and the pathogenesis of Batten disease.


Assuntos
Modelos Animais de Doenças , Genes Reporter/fisiologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Animais , Feminino , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa