Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Methods ; 223: 127-135, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331125

RESUMO

Biological membranes are highly complex supramolecular assemblies, which play central roles in biology. However, their complexity makes them challenging to study their nanoscale structures. To overcome this challenge, model membranes assembled using reduced sets of membrane-associated biomolecules have been found to be both excellent and tractable proxies for biological membranes. Due to their relative simplicity, they have been studied using a range of biophysical characterization techniques. In this review article, we will briefly detail the use of fluorescence and electron microscopies, and X-ray and neutron scattering techniques used over the past few decades to study the nanostructure of biological membranes.


Assuntos
Microscopia , Nêutrons , Biofísica , Membrana Celular , Lipídeos
2.
Artigo em Inglês | MEDLINE | ID: mdl-36790427

RESUMO

A bacterial isolate, B1D3AT, was isolated from river sediment collected from the Hiwassee River near Calhoun, TN, by enrichment culturing with a model 5-5' lignin dimer, dehydrodivanillate, as its sole carbon source. B1D3AT was also shown to utilize several model lignin-derived monomers and dimers as sole carbon sources in a variety of minimal media. Cells were Gram-stain-negative, aerobic, motile, rod-shaped and formed yellow/cream-coloured colonies on rich agar. Optimal growth occurred at 30 °C, pH 7-8, and in the absence of NaCl. The major fatty acids of B1D3AT were C18 : 1 ω7c and C17 : 1 ω6c. The predominant hydroxy fatty acids were C14 : 0 2-OH and C15 : 0 2-OH. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethanolamine and sphingoglycolipid. B1D3AT contained spermidine as the only major polyamine. The major isoprenoid quinone was Q-10 with minor amounts of Q-9 and Q-11. The genomic DNA G+C content of B1D3AT was 65.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 49 core, universal genes defined by Clusters of Orthologous Groups gene families indicated that B1D3AT was a member of the genus Sphingobium. B1D3AT was most closely related to Sphingobium sp. SYK-6, with a 100 % 16S rRNA gene sequence similarity. B1D3AT showed 78.1-89.9 % average nucleotide identity and 19.5-22.2% digital DNA-DNA hybridization identity with other type strains from the genus Sphingobium. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain B1D3AT should be classified as representing a novel species of the genus Sphingobium, for which the name Sphingobium lignivorans sp. nov. is proposed. The type strain is strain B1D3AT (ATCC TSD-279T=DSM 111877T).


Assuntos
Ácidos Graxos , Sphingomonadaceae , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Lignina , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Hibridização de Ácido Nucleico , Fosfolipídeos/química
3.
PLoS Biol ; 15(5): e2002214, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28542493

RESUMO

Examining the fundamental structure and processes of living cells at the nanoscale poses a unique analytical challenge, as cells are dynamic, chemically diverse, and fragile. A case in point is the cell membrane, which is too small to be seen directly with optical microscopy and provides little observational contrast for other methods. As a consequence, nanoscale characterization of the membrane has been performed ex vivo or in the presence of exogenous labels used to enhance contrast and impart specificity. Here, we introduce an isotopic labeling strategy in the gram-positive bacterium Bacillus subtilis to investigate the nanoscale structure and organization of its plasma membrane in vivo. Through genetic and chemical manipulation of the organism, we labeled the cell and its membrane independently with specific amounts of hydrogen (H) and deuterium (D). These isotopes have different neutron scattering properties without altering the chemical composition of the cells. From neutron scattering spectra, we confirmed that the B. subtilis cell membrane is lamellar and determined that its average hydrophobic thickness is 24.3 ± 0.9 Ångstroms (Å). Furthermore, by creating neutron contrast within the plane of the membrane using a mixture of H- and D-fatty acids, we detected lateral features smaller than 40 nm that are consistent with the notion of lipid rafts. These experiments-performed under biologically relevant conditions-answer long-standing questions in membrane biology and illustrate a fundamentally new approach for systematic in vivo investigations of cell membrane structure.


Assuntos
Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Algoritmos , Bacillus subtilis/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Cerulenina/farmacologia , Deutério , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/química , Deleção de Genes , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Difração de Nêutrons , Ácidos Palmíticos/química , Ácidos Palmíticos/metabolismo , Espalhamento a Baixo Ângulo , Estereoisomerismo
4.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475869

RESUMO

Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species, Caldicellulosiruptor sp. strain Rt8.B8 (renamed here Caldicellulosiruptor morganii), Thermoanaerobacter cellulolyticus strain NA10 (renamed here Caldicellulosiruptor naganoensis), and Caldicellulosiruptor sp. strain Wai35.B1 (renamed here Caldicellulosiruptor danielii), degraded Avicel and lignocellulose (switchgrass). C. morganii was more efficient than Caldicellulosiruptor bescii in this regard and differed from the other 12 species examined, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related to that of Caldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter, Fervidobacterium, Caloramator, and Clostridium). One enrichment, containing 89.8% Caldicellulosiruptor and 9.7% Caloramator, had a capacity for switchgrass solubilization comparable to that of C. bescii These results refine the known biodiversity of Caldicellulosiruptor and indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes.IMPORTANCE The genus Caldicellulosiruptor contains the most thermophilic bacteria capable of lignocellulose deconstruction, which are promising candidates for consolidated bioprocessing for the production of biofuels and bio-based chemicals. The focus here is on the extant capability of this genus for plant biomass degradation and the extent to which this can be inferred from the core and pangenomes, based on analysis of 13 species and metagenomic sequence information from environmental samples. Key to microcrystalline hydrolysis is the content of the glucan degradation locus (GDL), a set of genes encoding glycoside hydrolases (GHs), several of which have GH48 and family 3 carbohydrate binding module domains, that function as primary cellulases. Resolving the relationship between the GDL and lignocellulose degradation will inform efforts to identify more prolific members of the genus and to develop metabolic engineering strategies to improve this characteristic.


Assuntos
Firmicutes/genética , Firmicutes/metabolismo , Genoma Bacteriano , Lignina/metabolismo , Metagenoma , Celulose/metabolismo , Firmicutes/classificação , Genômica , Metagenômica
5.
Appl Environ Microbiol ; 83(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28733280

RESUMO

The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. While Escherichia coli has been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineered E. coli to catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway from Pseudomonas putida KT2440. We next used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics.IMPORTANCE Lignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. Constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. We constructed and optimized one such pathway in E. coli to enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Engenharia Metabólica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lignina/metabolismo , Parabenos/metabolismo , Pseudomonas putida/genética
6.
Appl Microbiol Biotechnol ; 100(18): 7921-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27118014

RESUMO

The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.


Assuntos
Nanopartículas/metabolismo , Sulfetos/metabolismo , Thermoanaerobacter/metabolismo , Compostos de Zinco/metabolismo , Anaerobiose , Concentração de Íons de Hidrogênio
7.
Microb Ecol ; 69(2): 333-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25319238

RESUMO

The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.


Assuntos
Archaea/classificação , Bactérias/classificação , Biomassa , Fontes Termais/microbiologia , Filogenia , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Biocombustíveis , Celulose/química , Clonagem Molecular , DNA Arqueal/genética , DNA Bacteriano/genética , Temperatura Alta , Lignina/química , Peso Molecular , Filogeografia , Populus/química , Populus/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Wyoming , Xilanos/química
8.
J Environ Sci (China) ; 34: 212-8, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26257364

RESUMO

This study took advantage of resorufin cellobioside as a fluorescent substrate to determine the distribution of cellulase activity in cellulosic biomass fermentation systems. Cellulolytic biofilms were found to express nearly four orders greater cellulase activity compared to planktonic cultures of Clostridium thermocellum and Caldicellulosiruptor obsidiansis, which can be primarily attributed to the high cell concentration and surface attachment. The formation of biofilms results in cellulases being secreted close to their substrates, which appears to be an energetically favorable stategy for insoluble substrate utilization. For the same reason, cellulases should be closely associated with the surfaces of suspended cell in soluble substrate-fed culture, which has been verified with cellobiose-fed cultures of C. thermocellum and C. obsidiansis. This study addressed the importance of cellulase activity distribution in cellulosic biomass fermentation, and provided theoretical foundation for the leading role of biofilm in cellulose degradation. System optimization and reactor designs that promote biofilm formation in cellulosic biomass hydrolysis may promise an improved cellulosic biofuel process.


Assuntos
Biofilmes , Celulases/metabolismo , Celulose/metabolismo , Firmicutes/fisiologia , Biocombustíveis/análise , Celulossomas , Clostridium thermocellum/fisiologia , Fermentação , Hidrólise
9.
Extremophiles ; 17(2): 251-63, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23345010

RESUMO

A novel sulfate-reducing bacterium designated OPF15(T) was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70-90 °C and an optimum of 83 °C. Optimal pH was around 6.5-7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15(T) was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15(T) representing the type strain.


Assuntos
Fontes Termais/microbiologia , Bactérias Redutoras de Enxofre/isolamento & purificação , Temperatura , Dióxido de Carbono/metabolismo , Celulose/metabolismo , Formiatos/metabolismo , Genes Bacterianos , Genes de RNAr , Glicerol/metabolismo , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos de Membrana/metabolismo , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Compostos de Enxofre/metabolismo , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/metabolismo , Wyoming
10.
J Environ Sci (China) ; 25(5): 849-56, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24218813

RESUMO

Live cell imaging methods provide important insights into the dynamics of cellular processes that cannot be derived easily from population-averaged datasets. In the bioenergy field, much research is focused on fermentation of cellulosic biomass by thermophilic microbes to produce biofuels; however, little effort is dedicated to the development of imaging tools to monitor this dynamic biological process. This is, in part, due to the experimental challenges of imaging cells under both anaerobic and thermophilic conditions. Here an imaging system is described that integrates confocal microscopy, a flow cell device, and a lipophilic dye to visualize cells. Solutions to technical obstacles regarding suitable fluorescent markers, photodamage during imaging, and maintenance of environmental conditions during imaging are presented. This system was utilized to observe cellulose colonization by Clostridium thermocellum under anaerobic conditions at 60 degrees C. This method enables live cell imaging of bacterial growth under anaerobic and thermophilic conditions and should be widely applicable to visualizing different cell types or processes in real time.


Assuntos
Celulose/metabolismo , Clostridium thermocellum/metabolismo , Anaerobiose , Carbocianinas/farmacologia , Clostridium thermocellum/crescimento & desenvolvimento , Escherichia coli/genética , Corantes Fluorescentes/farmacologia , Temperatura Alta , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Análise de Célula Única
11.
J Bacteriol ; 194(15): 4015-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22636774

RESUMO

Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acid-pretreated switchgrass, growth on crystalline cellulose is variable. The basis for this variability was examined using microbiological, genomic, and proteomic analyses of eight globally diverse Caldicellulosiruptor species. The open Caldicellulosiruptor pangenome (4,009 open reading frames [ORFs]) encodes 106 GHs, representing 43 GH families, but only 26 GHs from 17 families are included in the core (noncellulosic) genome (1,543 ORFs). Differentiating the strongly cellulolytic Caldicellulosiruptor species from the others is a specific genomic locus that encodes multidomain cellulases from GH families 9 and 48, which are associated with cellulose-binding modules. This locus also encodes a novel adhesin associated with type IV pili, which was identified in the exoproteome bound to crystalline cellulose. Taking into account the core genomes, pangenomes, and individual genomes, the ancestral Caldicellulosiruptor was likely cellulolytic and evolved, in some cases, into species that lost the ability to degrade crystalline cellulose while maintaining the capacity to hydrolyze amorphous cellulose and hemicellulose.


Assuntos
Biomassa , Metabolismo dos Carboidratos , Celulose/metabolismo , Bactérias Gram-Positivas/genética , Redes e Vias Metabólicas/genética , Plantas/química , Adesinas Bacterianas/análise , Adesinas Bacterianas/genética , Celulases/análise , Celulases/genética , Variação Genética , Genoma Bacteriano , Bactérias Gram-Positivas/enzimologia , Proteoma/análise
12.
Front Mol Biosci ; 9: 1011981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339713

RESUMO

Assessing the structure of living microbial cell membranes is a challenging analytical goal. The cell membrane is defined by its transverse structure, an approximately 5 nm-thick selectively permeable bilayer that serves many important cellular functions. Compositionally complex, dynamic, and organized in both the transverse and lateral dimensions, understanding the cell membrane structure-and the role that structure plays in cellular function, communication, and environmental sensing is an active scientific effort. Previously, we have devised a novel isotopic labeling approach for membrane lipids to enable direct in vivo structural studies of the cell membrane in the Gram-positive bacterium, Bacillus subtilis, using small-angle neutron scattering. This was accomplished through a genetic inhibition of fatty acid (FA) degradation (ΔfadN) and a chemical inhibition of FA biosynthesis using cerulenin, an irreversible inhibitor of type II fatty acid synthases. Here, we improve upon the previous system by introducing a dCas9/sgRNA-fabF complex that blocks transcription of the essential fabF gene when under xylose induction. This leads to greater sensitivity to cerulenin in the mutant strain (JEBS102) and more robust cell growth when supplementary FAs are introduced to the culture medium. A subtle change in FA uptake is noted when compared to the prior labeling strategy. This is seen in the gas chromatography/mass spectrometry (GC/MS) data as a higher ratio of n16:0 to a15:0, and manifests in an apparent increase in the membrane thickness determined via neutron scattering. This represents an improved method of isotopic labeling for the cell membrane of Bacillus subtilis; enabling improved investigations of cellular uptake and utilization of FAs, cell membrane structure and organization as a phenotypic response to metabolic and environmental changes.

13.
Proc Natl Acad Sci U S A ; 105(23): 8102-7, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18535141

RESUMO

The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, "Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49%. Of the 1,617 predicted protein-coding genes, 1,382 (85%) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.


Assuntos
Evolução Biológica , Genoma Arqueal/genética , Korarchaeota/genética , Ciclo Celular , Replicação do DNA , Metabolismo Energético , Evolução Molecular , Korarchaeota/citologia , Korarchaeota/ultraestrutura , Filogenia , Biossíntese de Proteínas , Análise de Sequência de DNA , Transcrição Gênica
14.
Artigo em Inglês | MEDLINE | ID: mdl-37965294

RESUMO

Slab models are simple and useful structural descriptions which have long been used to describe lyotropic lamellar phases, such as lipid bilayers. Typically, slab models assume a midline symmetry and break a bilayer structure into three pieces, a central solvent-free core and two symmetric outer layers composed of the soluble portion of the amphiphile and associated solvent. This breakdown matches reasonably well to the distribution of neutron scattering length density and therefore is a convenient and common approach for the treatment of small-angle scattering data. Here, an implementation of this model within the SasView software suite is reported. The implementation is intended to provide physical consistency through the area per amphiphile molecule and number of solvent molecules included within the solvent-exposed outer layer. The proper use of this model requires knowledge of (or good estimates for) the amphiphile and solvent molecule volume and atomic composition, ultimately providing a self-consistent data treatment with only two free parameters: the lateral area per amphiphile molecule and the number of solvent molecules included in the outer region per amphiphile molecule. The use of this code is demonstrated in the fitting of standard lipid bilayer data sets, obtaining structural parameters consistent with prior literature and illustrating the typical and ideal cases of fitting for neutron scattering data obtained using single or multiple contrast conditions. While demonstrated here for lipid bilayers, this model is intended for general application to block copolymers, surfactants, and other lyotropic lamellar phase structures for which a slab model is able to reasonably estimate the neutron scattering length density/electron-density profile of inner and outer layers of the lamellae.

15.
J Bacteriol ; 192(22): 6099-100, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20851897

RESUMO

Caldicellulosiruptor obsidiansis OB47(T) (ATCC BAA-2073, JCM 16842) is an extremely thermophilic, anaerobic bacterium capable of hydrolyzing plant-derived polymers through the expression of multidomain/multifunctional hydrolases. The complete genome sequence reveals a diverse set of carbohydrate-active enzymes and provides further insight into lignocellulosic biomass hydrolysis at high temperatures.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Bactérias Gram-Positivas/genética , Anaerobiose , Celulose/metabolismo , Bactérias Gram-Positivas/metabolismo , Temperatura Alta , Hidrolases/genética , Hidrolases/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA
16.
Appl Environ Microbiol ; 76(4): 1014-20, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20023107

RESUMO

A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47(T), was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 microm long by 0.2 microm wide and grew at temperatures between 55 and 85 degrees C, with the optimum at 78 degrees C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h(-1). The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47(T) was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47(T) within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Microbiologia da Água , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Composição de Bases , Sequência de Bases , Celobiose/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Fermentação , Genes Bacterianos , Temperatura Alta , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Fenótipo , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Wyoming
17.
Microbiol Resour Announc ; 9(49)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272987

RESUMO

Many soil microorganisms have evolved catabolic strategies to utilize phenolic compounds arising from depolymerized lignin. We report the complete genome sequences of four Pseudomonas sp. isolates that demonstrated robust growth on a wide range of aromatic monomers and dimers that are relevant to the valorization of lignin into value-added chemicals.

18.
Front Microbiol ; 11: 914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499768

RESUMO

Developing cultivation methods that yield chemically and isotopically defined fatty acid (FA) compositions within bacterial cytoplasmic membranes establishes an in vivo experimental platform to study membrane biophysics and cell membrane regulation using novel approaches. Yet before fully realizing the potential of this method, it is prudent to understand the systemic changes in cells induced by the labeling procedure itself. In this work, analysis of cellular membrane compositions was paired with proteomics to assess how the proteome changes in response to the directed incorporation of exogenous FAs into the membrane of Bacillus subtilis. Key findings from this analysis include an alteration in lipid headgroup distribution, with an increase in phosphatidylglycerol lipids and decrease in phosphatidylethanolamine lipids, possibly providing a fluidizing effect on the cell membrane in response to the induced change in membrane composition. Changes in the abundance of enzymes involved in FA biosynthesis and degradation are observed; along with changes in abundance of cell wall enzymes and isoprenoid lipid production. The observed changes may influence membrane organization, and indeed the well-known lipid raft-associated protein flotillin was found to be substantially down-regulated in the labeled cells - as was the actin-like protein MreB. Taken as a whole, this study provides a greater depth of understanding for this important cell membrane experimental platform and presents a number of new connections to be explored in regard to modulating cell membrane FA composition and its effects on lipid headgroup and raft/cytoskeletal associated proteins.

19.
BMC Genomics ; 10: 145, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19341479

RESUMO

BACKGROUND: Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. RESULTS: The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced -- Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. CONCLUSION: The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.


Assuntos
Desulfurococcaceae/genética , Genoma Arqueal , Pyrodictiaceae/genética , Enxofre/metabolismo , Thermofilaceae/genética , Sequência de Aminoácidos , Carboxiliases/metabolismo , Desulfurococcaceae/classificação , Desulfurococcaceae/metabolismo , Transporte de Elétrons , Genômica , Metilmalonil-CoA Descarboxilase/metabolismo , Dados de Sequência Molecular , Filogenia , Pyrodictiaceae/metabolismo , Thermofilaceae/metabolismo , Transposases/genética
20.
Microbiol Resour Announc ; 8(32)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395644

RESUMO

Here, we report the complete genome sequence of Caloramator sp. strain E03, an anaerobic thermophile that was isolated from a hot spring within the Rabbit Creek area of Yellowstone National Park. The assembly contains a single 2,984,770-bp contig with a G+C content of 31.3% and is predicted to encode 2,678 proteins.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa