Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 189(1): 329-343, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35157085

RESUMO

Linear electron flow (LEF) and cyclic electron flow (CEF) compete for light-driven electrons transferred from the acceptor side of photosystem I (PSI). Under anoxic conditions, such highly reducing electrons also could be used for hydrogen (H2) production via electron transfer between ferredoxin and hydrogenase in the green alga Chlamydomonas reinhardtii. Partitioning between LEF and CEF is regulated through PROTON-GRADIENT REGULATION5 (PGR5). There is evidence that partitioning of electrons also could be mediated via PSI remodeling processes. This plasticity is linked to the dynamics of PSI-associated light-harvesting proteins (LHCAs) LHCA2 and LHCA9. These two unique light-harvesting proteins are distinct from all other LHCAs because they are loosely bound at the PSAL pole. Here, we investigated photosynthetic electron transfer and H2 production in single, double, and triple mutants deficient in PGR5, LHCA2, and LHCA9. Our data indicate that lhca2 and lhca9 mutants are efficient in photosynthetic electron transfer, that LHCA2 impacts the pgr5 phenotype, and that pgr5/lhca2 is a potent H2 photo-producer. In addition, pgr5/lhca2 and pgr5/lhca9 mutants displayed substantially different H2 photo-production kinetics. This indicates that the absence of LHCA2 or LHCA9 impacts H2 photo-production independently, despite both being attached at the PSAL pole, pointing to distinct regulatory capacities.


Assuntos
Elétrons , Complexo de Proteína do Fotossistema I , Transporte de Elétrons , Hidrogênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Prótons , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
2.
Nucleic Acids Res ; 45(10): 5945-5957, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28460002

RESUMO

Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC-MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase.


Assuntos
Mitose/genética , Polirribossomos/fisiologia , Biossíntese de Proteínas/fisiologia , Proteômica/métodos , Fatores de Processamento de RNA/fisiologia , Cromatografia Líquida , Fase G1 , Técnicas de Silenciamento de Genes , Ontologia Genética , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/fisiologia , Humanos , Interfase , Interferência de RNA , Fatores de Processamento de RNA/isolamento & purificação , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/fisiologia , Proteínas Ribossômicas/genética , Espectrometria de Massas em Tandem
3.
Commun Biol ; 6(1): 514, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173420

RESUMO

Photosynthetic hydrogen production from microalgae is considered to have potential as a renewable energy source. Yet, the process has two main limitations holding it back from scaling up; (i) electron loss to competing processes, mainly carbon fixation and (ii) sensitivity to O2 which diminishes the expression and the activity of the hydrogenase enzyme catalyzing H2 production. Here we report a third, hitherto unknown challenge: We found that under anoxia, a slow-down switch is activated in photosystem II (PSII), diminishing the maximal photosynthetic productivity by three-fold. Using purified PSII and applying in vivo spectroscopic and mass spectrometric techniques on Chlamydomonas reinhardtii cultures, we show that this switch is activated under anoxia, within 10 s of illumination. Furthermore, we show that the recovery to the initial rate takes place following 15 min of dark anoxia, and propose a mechanism in which, modulation in electron transfer at the acceptor site of PSII diminishes its output. Such insights into the mechanism broaden our understanding of anoxic photosynthesis and its regulation in green algae and inspire new strategies to improve bio-energy yields.


Assuntos
Chlamydomonas reinhardtii , Iluminação , Complexo de Proteína do Fotossistema II/metabolismo , Hidrogênio/metabolismo , Fotossíntese , Chlamydomonas reinhardtii/fisiologia , Hipóxia
4.
STAR Protoc ; 3(3): 101640, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36042878

RESUMO

H2 production from green-microalgae, for energy purposes, is the ultimate goal of large-scale production. Here, we present a two-phase protocol for hydrogen production assay under ambient conditions using Chlamydomonas reinhardtii, which eliminates steps used previously, including centrifugation and resuspension with sulfur-deprived media. We detail steps for Chlamydomonas reinhardtii culture, acetate supply replenishment, anaerobic induction, and H2 quantification. This protocol enables large-scale experiments in an easy and cost-effective method while maintaining cells vital, crucial factors for transition to industrial scales. For complete details on the use and execution of this protocol, please refer to Elman et al. (2022).


Assuntos
Chlamydomonas reinhardtii , Microalgas , Hidrogênio , Luz , Enxofre/farmacologia
5.
Biochim Biophys Acta Bioenerg ; 1860(9): 689-698, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31336103

RESUMO

The binding of FNR to PSI has been postulated long ago, however, a clear evidence is still missing. In this work, using isothermal titration calorimetry (ITC), we found that FNR binds to photosystem I with its light harvesting complex I (PSI-LHCI) from C. reinhardtii with a 1:1 stoichiometry, a Kd of ~0.8 µM and ∆H of -20.7 kcal/mol. Titrations at different temperatures were used to determine the heat capacity change, ∆CP, of the binding, through which the size of the interface area between the proteins was assessed as ~3000 Å2. In a different set of ITC experiments, introduction of various sucrose concentrations was used to estimate that ~95 water molecules are released to the solvent. These observations support the notion of a binding site shared by few of the photosystem I - light harvesting complex I (PSI-LHCI) subunits in addition to PsaE. Based on these results, a hypothetical model was built for the binding site of FNR at PSI, using known crystallographic structures of: cyanobacterial PSI in complex with ferredoxin (Fd), plant PSI-LHCI and Fd:FNR complex from cyanobacteria. FNR binding site location is proposed to be at the foot of the stromal ridge and above the inner LHCI belt. It is expected to form contacts with PsaE, PsaB, PsaF and at least one of the LHCI. In addition, a ~4.5-fold increased affinity between FNR and PSI-LHCI under crowded 1 M sucrose environment led us to conclude that in C. reinhardtii FNR also functions as a subunit of PSI-LHCI.


Assuntos
Arabidopsis/metabolismo , Chlamydomonas reinhardtii/enzimologia , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , NADP/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Cristalografia por Raios X , Cianobactérias/metabolismo , Transporte de Elétrons , Ferredoxina-NADP Redutase/química , Ferredoxinas/química , Luz , Complexos de Proteínas Captadores de Luz , NADP/química , Complexo de Proteína do Fotossistema I/química , Conformação Proteica
6.
Front Plant Sci ; 10: 1784, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117346

RESUMO

The integration of genes into the nuclear genome of Chlamydomonas reinhardtii is mediated by Non-Homologous-End-Joining, thus resulting in unpredicted insertion locations. This phenomenon defines 'the position-effect', which is used to explain the variation of expression levels between different clones transformed with the same DNA fragment. Likewise, nuclear transgenes often undergo epigenetic silencing that reduces their expression; hence, nuclear transformations require high-throughput screening methods to isolate clones that express the foreign gene at a desirable level. Here, we show that the number of integration sites of heterologous genes results in higher mRNA levels. By transforming both a synthetic ferredoxin-hydrogenase fusion enzyme and a Gaussia-Luciferase reporter protein, we were able to obtain 33 positive clones that exhibit a wide range of synthetic expression. We then performed a droplet-digital polymerase-chain-reaction for these lines to measure their transgene DNA copy-number and mRNA levels. Surprisingly, most clones contain two integration sites of the synthetic gene (45.5%), whilst 33.3% contain one, 18.1% include three and 3.1% encompass four. Remarkably, we observed a positive correlation between the raw DNA copy-number values to the mRNA levels, suggesting a general effect of which transcription of transgenes is partially modulated by their number of copies in the genome. However, our data indicate that only clones harboring at least three copies of the target amplicon show a significant increment in mRNA levels of the reporter transgene. Lastly, we measured protein activity for each of the reporter genes to elucidate the effect of copy-number variation on heterologous expression.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa