Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 147(5): 1011-23, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118459

RESUMO

Atypical antipsychotic drugs, such as clozapine and risperidone, have a high affinity for the serotonin 5-HT(2A) G protein-coupled receptor (GPCR), the 2AR, which signals via a G(q) heterotrimeric G protein. The closely related non-antipsychotic drugs, such as ritanserin and methysergide, also block 2AR function, but they lack comparable neuropsychological effects. Why some but not all 2AR inhibitors exhibit antipsychotic properties remains unresolved. We now show that a heteromeric complex between the 2AR and the G(i)-linked GPCR, metabotropic glutamate 2 receptor (mGluR2), integrates ligand input, modulating signaling output and behavioral changes. Serotonergic and glutamatergic drugs bind the mGluR2/2AR heterocomplex, which then balances Gi- and Gq-dependent signaling. We find that the mGluR2/2AR-mediated changes in Gi and Gq activity predict the psychoactive behavioral effects of a variety of pharmocological compounds. These observations provide mechanistic insight into antipsychotic action that may advance therapeutic strategies for disorders including schizophrenia and dementia.


Assuntos
Antipsicóticos/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais , Anfetaminas/farmacologia , Animais , Clozapina/farmacologia , Dimerização , Relação Dose-Resposta a Droga , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Metisergida/farmacologia , Camundongos , Oócitos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Xenopus
2.
IUBMB Life ; 75(11): 926-940, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37427864

RESUMO

Frequent premature ventricular contractions (PVCs) promoted eccentric cardiac hypertrophy and reduced ejection fraction (EF) in a large animal model of PVC-induced cardiomyopathy (PVC-CM), but the molecular mechanisms and markers of this hypertrophic remodeling remain unexplored. Healthy mongrel canines were implanted with pacemakers to deliver bigeminal PVCs (50% burden with 200-220 ms coupling interval). After 12 weeks, left ventricular (LV) free wall samples were studied from PVC-CM and Sham groups. In addition to reduced LV ejection fraction (LVEF), the PVC-CM group showed larger cardiac myocytes without evident ultrastructural alterations compared to the Sham group. Biochemical markers of pathological hypertrophy, such as store-operated Ca2+ entry, calcineurin/NFAT pathway, ß-myosin heavy chain, and skeletal type α-actin were unaltered in the PVC-CM group. In contrast, pro-hypertrophic and antiapoptotic pathways including ERK1/2 and AKT/mTOR were activated and/or overexpressed in the PVC-CM group, which appeared counterbalanced by an overexpression of protein phosphatase 1 and a borderline elevation of the anti-hypertrophic factor atrial natriuretic peptide. Moreover, the potent angiogenic and pro-hypertrophic factor VEGF-A and its receptor VEGFR2 were significantly elevated in the PVC-CM group. In conclusion, a molecular program is in place to keep this structural remodeling associated with frequent PVCs as an adaptive pathological hypertrophy.


Assuntos
Cardiomiopatias , Complexos Ventriculares Prematuros , Animais , Cães , Complexos Ventriculares Prematuros/complicações , Remodelação Ventricular , Modelos Animais de Doenças , Hipertrofia/complicações
3.
Mol Cell Biochem ; 478(7): 1447-1456, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36350464

RESUMO

Premature ventricular contractions (PVCs) are the most frequent ventricular arrhythmias in the overall population. PVCs are known to acutely enhance contractility by the post-extrasystolic potentiation phenomenon, but over time persistent PVCs promote PVC-induced cardiomyopathy (PVC-CM), characterized by a reduction of the left ventricular (LV) ejection fraction. Ca2+ cycling in myocytes commands muscle contraction and in this process, SERCA2 leads the Ca2+ reuptake into the sarcoplasmic reticulum (SR) shaping cytosolic Ca2+ signal decay and muscle relaxation. Altered Ca2+ reuptake can contribute to the contractile dysfunction observed in PVC-CM. To better understand Ca2+ handling using our PVC-CM model (canines with 50% PVC burden for 12 weeks), SR-Ca2+ reuptake was investigated by measuring Ca2+ dynamics and analyzing protein expression. Kinetic analysis of Ca2+ reuptake in electrically paced myocytes showed a ~ 21 ms delay in PVC-CM compared to Sham in intact isolated myocytes, along with a ~ 13% reduction in SERCA2 activity assessed in permeabilized myocytes. Although these trends were not statistically significant between groups using hierarchical statistics, relaxation of myocytes following contraction was significantly slower in PVC-CM vs Sham myocytes. Western blot analyses indicate a 22% reduction in SERCA2 expression, a 23% increase in phospholamban (PLN) expression, and a 50% reduction in PLN phosphorylation in PVC-CM samples vs Sham. Computational analysis simulating a 20% decrease in SR-Ca2+ reuptake resulted in a ~ 22 ms delay in Ca2+ signal decay, consistent with the experimental result described above. In conclusion, SERCA2 and PLB alterations described above have a modest contribution to functional adaptations observed in PVC-CM.


Assuntos
Cardiomiopatias , Complexos Ventriculares Prematuros , Animais , Cães , Complexos Ventriculares Prematuros/metabolismo , Retículo Sarcoplasmático/metabolismo , Cinética , Cardiomiopatias/metabolismo , Células Musculares , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo
4.
Toxicol Appl Pharmacol ; 419: 115513, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33785354

RESUMO

The early characterization of ligands at the dopamine and serotonin transporters, DAT and SERT, respectively, is important for drug discovery, forensic sciences, and drug abuse research. 4-Methyl amphetamine (4-MA) is a good example of an abused drug whose overdose can be fatal. It is a potent substrate at DAT and SERT where its simplest secondary amine (N-methyl 4-MA) retains substrate activity at them. In contrast, N-n-butyl 4-MA is very weak, therefore it was categorized as inactive at these transporters. Here, N-octyl 4-MA and other related compounds were synthesized, and their activities were evaluated at DAT and SERT. To expedite this endeavor, cells expressing DAT or SERT were co-transfected with a voltage-gated Ca2+ channel and, the genetically-encoded Ca2+ sensor, GCaMP6s. Control compounds and the newly synthesized molecules were tested on these cells using an automated multi-well fluorescence plate reader; substrates and inhibitors were identified successfully at DAT and SERT. N-Octyl 4-MA and three bivalent compounds were inhibitors at these transporters. These findings were validated by measuring Ca2+-mobilization using quantitative fluorescence microscopy. The bivalent molecules were the most potent of the series and were further characterized in an uptake-inhibition assay. Compared to cocaine, they showed comparable potency inhibiting uptake at DAT and higher potency at SERT. These observations support a previous hypothesis that amphetamine-related (and, here, N-extended alkyl and) bivalent arylalkylamine molecules are active at monoamine transporters, showing potent activity as reuptake inhibitors, and implicate the involvement of a distant auxiliary binding feature to account for their actions at DAT and SERT.


Assuntos
Técnicas Biossensoriais , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Inibidores da Captação de Dopamina/toxicidade , Proteínas de Fluorescência Verde/metabolismo , Metanfetamina/toxicidade , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Canais de Cálcio/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Metanfetamina/análogos & derivados , Metanfetamina/síntese química , Microscopia de Fluorescência , Estrutura Molecular , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Relação Estrutura-Atividade , Fatores de Tempo
5.
Adv Exp Med Biol ; 1349: 225-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35138617

RESUMO

Contraction of the striated muscle is fundamental for human existence. The action of voluntary skeletal muscle enables activities such as breathing, establishing body posture, and diverse body movements. Additionally, highly precise motion empowers communication, artistic expression, and other activities that define everyday human life. The involuntary contraction of striated muscle is the core function of the heart and is essential for blood flow. Several ion channels are important in the transduction of action potentials to cytosolic Ca2+ signals that enable muscle contraction; however, other ion channels are involved in the progression of muscle pathologies that can impair normal life or threaten it. This chapter describes types of selective and nonselective Ca2+ permeable ion channels expressed in the striated muscle, their participation in different aspects of muscle excitation and contraction, and their relevance to the progression of some pathological states.


Assuntos
Canais de Cálcio , Contração Muscular , Humanos , Músculo Esquelético , Miocárdio , Proteína ORAI1
6.
Am J Physiol Cell Physiol ; 314(3): C323-C333, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212769

RESUMO

Malignant hyperthermia (MH) susceptibility has been recently linked to a novel variant of ß1a subunit of the dihydropyridine receptor (DHPR), a channel essential for Ca2+ regulation in skeletal muscle. Here we evaluate the effect of the mutant variant V156A on the structure/function of DHPR ß1a subunit and assess its role on Ca2+ metabolism of cultured myotubes. Using differential scanning fluorimetry, we show that mutation V156A causes a significant reduction in thermal stability of the Src homology 3/guanylate kinase core domain of ß1a subunit. Expression of the variant subunit in ß1-null mouse myotubes resulted in increased sensitivity to caffeine stimulation. Whole cell patch-clamp analysis of ß1a-V156A-expressing myotubes revealed a -2 mV shift in voltage dependence of channel activation, but no changes in Ca2+ conductance, current kinetics, or sarcoplasmic reticulum Ca2+ load were observed. Measurement of resting free Ca2+ and Na+ concentrations shows that both cations were significantly elevated in ß1a-V156A-expressing myotubes and that these changes were linked to increased rates of plasmalemmal Ca2+ entry through Na+/Ca2+ exchanger and/or transient receptor potential canonical channels. Overall, our data show that mutant variant V156A results in instability of protein subdomains of ß1a subunit leading to a phenotype of Ca2+ dysregulation that partly resembles that of other MH-linked mutations of DHPR α1S subunit. These data prove that homozygous expression of variant ß1a-V156A has the potential to be a pathological variant, although it may require other gene defects to cause a full MH phenotype.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Hipertermia Maligna/metabolismo , Mioblastos/metabolismo , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Homozigoto , Humanos , Cinética , Hipertermia Maligna/genética , Hipertermia Maligna/fisiopatologia , Camundongos Knockout , Mutação , Mioblastos/efeitos dos fármacos , Domínios Proteicos , Estabilidade Proteica , Relação Estrutura-Atividade
7.
J Pharmacol Exp Ther ; 367(2): 222-233, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150482

RESUMO

Drugs that inhibit the dopamine (DA) transporter (DAT) include both therapeutic agents and abused drugs. Recent studies identified a novel series of putative allosteric DAT inhibitors, but the in vivo effects of these compounds are unknown. This study examined the abuse-related behavioral and neurochemical effects produced in rats by SRI-31142 [2-(7-methylimidazo[1,2-a]pyridin-6-yl)-N-(2-phenyl-2-(pyridin-4-yl)ethyl)quinazolin-4-amine], one compound from this series. In behavioral studies, intracranial self-stimulation (ICSS) was used to compare the effects produced by SRI-31142, the abused and nonselective DAT inhibitor cocaine, and the selective DAT inhibitor GBR-12935 [1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine]. In neurochemical studies, in vivo microdialysis was used to compare the effects of SRI-31142 and cocaine on levels of DA and serotonin in nucleus accumbens (NAc). The effects of SRI-31142 in combination with cocaine were also examined in both procedures. In contrast to cocaine and GBR-12935, SRI-31142 failed to produce abuse-related increases in ICSS or NAc DA; instead, SRI-31142 only decreased ICSS and NAc DA at a dose that was also sufficient to block cocaine-induced increases in ICSS and NAc DA. Pharmacokinetic studies suggested low but adequate brain penetration of SRI-31142, in vitro binding studies failed to identify likely non-DAT targets, and in vitro functional assays failed to confirm DA uptake inhibition in an assay of DAT-mediated fluorescent signals in live cells. These results indicate that SRI-31142 does not produce cocaine-like abuse-related effects in rats. SRI-31142 may have utility to block cocaine effects and may warrant further study as a candidate pharmacotherapy; however, the role of DAT in mediating these effects is unclear, and side effects may be a limiting factor.


Assuntos
Cocaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Animais , Ligantes , Masculino , Microdiálise/métodos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo
8.
FASEB J ; 29(12): 4853-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26246404

RESUMO

The neuroinflammation associated with multiple sclerosis involves activation of astrocytes that secrete and respond to inflammatory mediators such as IL-1. IL-1 stimulates expression of many chemokines, including C-C motif ligand (CCL) 5, that recruit immune cells, but it also stimulates sphingosine kinase-1, an enzyme that generates sphingosine-1-phosphate (S1P), a bioactive lipid mediator essential for inflammation. We found that whereas S1P promotes IL-1-induced expression of IL-6, it inhibits IL-1-induced CCL5 expression in astrocytes. This inhibition is mediated by the S1P receptor (S1PR)-2 via an inhibitory G-dependent mechanism. Consistent with this surprising finding, infiltration of macrophages into sites of inflammation increased significantly in S1PR2(-/-) animals. However, activation of NF-κB, IFN regulatory factor-1, and MAPKs, all of which regulate CCL5 expression in response to IL-1, was not diminished by the S1P in astrocytes. Instead, S1PR2 stimulated inositol 1,4,5-trisphosphate-dependent Ca(++) release and Elk-1 phosphorylation and enhanced c-Fos expression. In our study, IL-1 induced the IFNß production that supports CCL5 expression. An intriguing finding was that S1P induced c-Fos-inhibited CCL5 directly and also indirectly through inhibition of the IFN-ß amplification loop. We propose that in addition to S1PR1, which promotes inflammation, S1PR2 mediates opposing inhibitory functions that limit CCL5 expression and diminish the recruitment of immune cells.


Assuntos
Quimiocina CCL5/antagonistas & inibidores , Interferon beta/metabolismo , Interleucina-1/antagonistas & inibidores , Lisofosfolipídeos/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Esfingosina/análogos & derivados , Animais , Células Cultivadas , Humanos , Fator Regulador 1 de Interferon/biossíntese , Interferon beta/biossíntese , Ligantes , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Esfingosina/fisiologia
9.
J Biol Chem ; 289(52): 36116-24, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25384984

RESUMO

The ß1a subunit is a cytoplasmic component of the dihydropyridine receptor (DHPR) complex that plays an essential role in skeletal muscle excitation-contraction (EC) coupling. Here we investigate the role of the C-terminal end of this auxiliary subunit in the functional and structural communication between the DHPR and the Ca(2+) release channel (RyR1). Progressive truncation of the ß1a C terminus showed that deletion of amino acid residues Gln(489) to Trp(503) resulted in a loss of depolarization-induced Ca(2+) release, a severe reduction of L-type Ca(2+) currents, and a lack of tetrad formation as evaluated by freeze-fracture analysis. However, deletion of this domain did not affect expression/targeting or density (Qmax) of the DHPR-α1S subunit to the plasma membrane. Within this motif, triple alanine substitution of residues Leu(496), Leu(500), and Trp(503), which are thought to mediate direct ß1a-RyR1 interactions, weakened EC coupling but did not replicate the truncated phenotype. Therefore, these data demonstrate that an amino acid segment encompassing sequence (489)QVQVLTSLRRNLSFW(503) of ß1a contains critical determinant(s) for the physical link of DHPR and RyR1, further confirming a direct correspondence between DHPR positioning and DHPR/RyR functional interactions. In addition, our data strongly suggest that the motif Leu(496)-Leu(500)-Trp(503) within the ß1a C-terminal tail plays a nonessential role in the bidirectional DHPR/RyR1 signaling that supports skeletal-type EC coupling.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células Cultivadas , Acoplamento Excitação-Contração , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana , Camundongos , Dados de Sequência Molecular , Subunidades Proteicas , Transporte Proteico
10.
J Biol Chem ; 289(27): 19180-90, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24847052

RESUMO

Malignant hyperthermia (MH) is potentially fatal pharmacogenetic disorder of skeletal muscle caused by intracellular Ca(2+) dysregulation. NCX is a bidirectional transporter that effluxes (forward mode) or influxes (reverse mode) Ca(2+) depending on cellular activity. Resting intracellular calcium ([Ca(2+)]r) and sodium ([Na(+)]r) concentrations are elevated in MH susceptible (MHS) swine and murine muscles compared with their normal (MHN) counterparts, although the contribution of NCX is unclear. Lowering [Na(+)]e elevates [Ca(2+)]r in both MHN and MHS swine muscle fibers and it is prevented by removal of extracellular Ca(2+) or reduced by t-tubule disruption, in both genotypes. KB-R7943, a nonselective NCX3 blocker, reduced [Ca(2+)]r in both swine and murine MHN and MHS muscle fibers at rest and decreased the magnitude of the elevation of [Ca(2+)]r observed in MHS fibers after exposure to halothane. YM-244769, a high affinity reverse mode NCX3 blocker, reduces [Ca(2+)]r in MHS muscle fibers and decreases the amplitude of [Ca(2+)]r rise triggered by halothane, but had no effect on [Ca(2+)]r in MHN muscle. In addition, YM-244769 reduced the peak and area under the curve of the Ca(2+) transient elicited by high [K(+)]e and increased its rate of decay in MHS muscle fibers. siRNA knockdown of NCX3 in MHS myotubes reduced [Ca(2+)]r and the Ca(2+) transient area induced by high [K(+)]e. These results demonstrate a functional NCX3 in skeletal muscle whose activity is enhanced in MHS. Moreover reverse mode NCX3 contributes to the Ca(2+) transients associated with K(+)-induced depolarization and the halothane-triggered MH episode in MHS muscle fibers.


Assuntos
Cálcio/metabolismo , Hipertermia Maligna/metabolismo , Músculo Esquelético/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Halotano/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Hipertermia Maligna/patologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Potássio/metabolismo , Sódio/metabolismo , Trocador de Sódio e Cálcio/genética , Suínos , Tioureia/análogos & derivados , Tioureia/farmacologia
11.
FASEB J ; 27(3): 991-1000, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23159934

RESUMO

Malignant hyperthermia (MH) susceptibility has been attributed to a leaky sarcoplasmic reticulum (SR) caused by missense mutations in RYR1 or CACNA1S, and the MH crisis has been attributed solely to massive self-sustaining release of Ca(2+) from SR stores elicited by triggering agents. Here, we show in muscle cells from MH-RyR1(R163C) knock-in mice that increased passive SR Ca(2+) leak causes an enlarged basal influx of sarcolemmal Ca(2+) that results in chronically elevated myoplasmic free Ca(2+) concentration ([Ca(2+)]i) at rest. We discovered that Gd(+3) and GsMTx-4 were more effective than BTP2 or expression of the dominant-negative Orai1(E190Q) in reducing both Ca(2+) entry and [Ca(2+)]i, implicating a non-STIM1/Orai1 SOCE pathway in resetting resting [Ca(2+)]i. Indeed, two nonselective cationic channels, TRPC3 and TRPC6, are overexpressed, and [Na]i is chronically elevated in MH-RyR1(R163C) muscle cells. [Ca(2+)]i and [Na(+)]i are persistently elevated in vivo and further increased by halothane in MH-RyR1(R163C/WT) muscle. These increases are markedly attenuated by local perfusion of Gd(+3) or GsMTx-4 and completely suppressed by dantrolene. These results contribute a new paradigm for understanding MH pathophysiology by demonstrating that nonselective sarcolemmal cation channel activity plays a critical role in causing myoplasmic Ca(2+) and Na(+) overload both at rest and during the MH crisis.-Eltit, J. M., Ding, X., Pessah, I. N., Allen, P. D., Lopez, J. R. Nonspecific sarcolemmal cation channels are critical for the pathogenesis of malignant hyperthermia.


Assuntos
Canais de Cálcio/metabolismo , Hipertermia Maligna/metabolismo , Células Musculares/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio Tipo L , Cátions Bivalentes/metabolismo , Cátions Monovalentes/metabolismo , Hipertermia Maligna/genética , Hipertermia Maligna/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Células Musculares/patologia , Mutação de Sentido Incorreto , Proteína ORAI1 , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sarcolema/genética , Sarcolema/patologia , Sódio/metabolismo , Molécula 1 de Interação Estromal
12.
Adv Pharmacol ; 99: 83-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467490

RESUMO

Synthetic cathinone derivatives comprise a family of psychoactive compounds structurally related to amphetamine. Over the last decade, clandestine chemists have synthesized a consistent stream of innovative cathinone derivatives to outpace governmental regulatory restrictions. Many of these unregulated substances are produced and distributed as designer drugs. Two of the principal chemical scaffolds exploited to expand the synthetic cathinone family are methcathinone and α-pyrrolidinopentiophenone (or α-pyrrolidinovalerophenone, α-PVP). These compounds' main physiological targets are monoamine transporters, where they promote addiction by potentiating dopaminergic neurotransmission. This chapter describes techniques used to study the pharmacodynamic properties of cathinones at monoamine transporters in vitro. Biochemical techniques described include uptake inhibition and release assays in rat brain synaptosomes and in mammalian expression systems. Electrophysiological techniques include current measurements using the voltage clamp technique. We describe a Ca2+ mobilization assay wherein voltage-gated Ca2+ channels function as reporters to study the action of synthetic cathinones at monoamine transporters. We discuss results from systematic structure-activity relationship studies on simple and complex cathinones at monoamine transporters with an emphasis on identifying structural moieties that modulate potency and selectivity at these transporters. Moreover, different profiles of selectivity at monoamine transporters directly predict compounds associated with behavioral and subjective effects within animals and humans. In conclusion, clarification of the structural aspects of compounds which modulate potency and selectivity at monoamine transporters is critical to identify and predict potential addictive drugs. This knowledge may allow prompt allocation of resources toward drugs that represent the greatest threats after drugs are identified by forensic laboratories.


Assuntos
Estimulantes do Sistema Nervoso Central , Catinona Sintética , Ratos , Animais , Humanos , Anfetaminas , Estimulantes do Sistema Nervoso Central/química , Estimulantes do Sistema Nervoso Central/farmacologia , Pirrolidinas/química , Pirrolidinas/metabolismo , Pirrolidinas/farmacologia , Mamíferos/metabolismo
13.
ACS Chem Neurosci ; 14(4): 741-748, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36745029

RESUMO

2-(Benzoyl)piperidines (analogues of 1a), structural hybrids of the clinically employed ADHD medication methylphenidate (2) and the abused synthetic cathinone pentedrone (3), have been previously reported to act as novel and selective reuptake inhibitors of the human dopamine transporter (hDAT). One of the more potent benzoylpiperidines, as is the case with methylphenidate analogues, is its 3,4-dichloroaryl counterpart. Here, we demonstrate using homology models that these compounds (i.e., benzoylpiperidines and methylphenidate analogues) likely bind in a comparable manner at hDAT. In addition, it is shown here that the 3,4-dichlorobenzoylpiperidine analogue of 1a is more potent than its 3,4-dimethyl counterpart, suggesting that the electronic character of the substituents might play a role in the potency of these hybrids. Furthermore, the 3,4-benz-fused (i.e., naphthyl) benzoylpiperidine analogue acts in the same manner as its corresponding methylphenidate counterpart at hDAT. As with its methylphenidate counterpart, the naphthyl compound also acts, rather uniquely (although with lower potency) relative to other members of the two series, at the human serotonin transporter (hSERT). In conclusion, the benzoylpiperidines represent a novel structural class of hDAT reuptake inhibitors that function in a manner similar to their methylphenidate counterparts.


Assuntos
Inibidores da Captação de Dopamina , Metilfenidato , Humanos , Inibidores da Captação de Dopamina/farmacologia , Piperidinas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Metilfenidato/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transporte Biológico
14.
ACS Chem Neurosci ; 14(14): 2527-2536, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37406364

RESUMO

α-Pyrrolidinohexiophenone (α-PHP) is the one-carbon unit α-extended homolog of the better-known and widely abused synthetic cathinone central stimulant α-PVP ("flakka"); both are now U.S. Schedule I controlled substances. Structurally, α-PVP and α-PHP possess a common terminal N-pyrrolidine moiety and differ only with respect to the length of their α-alkyl chain. Using a synaptosomal assay, we previously reported that α-PHP is at least as potent as α-PVP as a dopamine transporter (DAT) reuptake inhibitor. A systematic structure-activity study of synthetic cathinones (e.g., α-PHP) as DAT reuptake inhibitors (i.e., transport blockers), a mechanism thought responsible for their abuse liability, has yet to be conducted. Here, we examined a series of 4-substituted α-PHP analogues and found that, with one exception, all behaved as relatively (28- to >300-fold) selective DAT versus serotonin transporter (SERT) reuptake inhibitors with DAT inhibition potencies of most falling within a very narrow (i.e., <3-fold) range. The 4-CF3 analogue of α-PHP was a confirmed "outlier" in that it was at least 80-fold less potent than the other analogues and displayed reduced (i.e., no) DAT vs SERT selectivity. Consideration of various physicochemical properties of the CF3 group, relative to that of the other substituents involved here, provided relatively little insight. Unlike with DAT-releasing agents, as previously reported by us, a QSAR study was precluded because of the limited range of empirical results (with the exception of the 4-CF3 analogue) for DAT reuptake inhibition.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Catinona Sintética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Pirrolidinas/farmacologia , Pirrolidinas/química , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/química , Relação Estrutura-Atividade , Proteínas da Membrana Plasmática de Transporte de Serotonina , Inibidores Seletivos de Recaptação de Serotonina
15.
Front Pharmacol ; 14: 1101290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762110

RESUMO

Certain 4-substituted analogs of 1-(2,5-dimethoxyphenyl)isopropylamine (2,5-DMA) are psychoactive classical hallucinogens or serotonergic psychedelic agents that function as human 5-HT2A (h5-HT2A) serotonin receptor agonists. Activation of a related receptor population, h5-HT2B receptors, has been demonstrated to result in adverse effects including cardiac valvulopathy. We previously published on the binding of several such agents at the two receptor subtypes. We hypothesized that, due to their structural similarity, the 5-HT2A and 5-HT2B receptor affinities of these agents might be related, and that QSAR studies might aid future studies. For a series of 13 compounds, it is demonstrated here that i) their published rat brain 5-HT2 receptor affinities are significantly correlated with their h5-HT2A (r = 0.942) and h5-HT2B (r = 0.916) affinities, ii) as with r5-HT2 receptor affinity, h5-HT2A affinity is correlated with the lipophilicity of the 4-position substituent (r = 0.798), iii) that eight of the ten compounds examined in functional (Ca+2 mobilization in stable cell lines generated expressing the human 5-HT2B receptor using the Flp-In T-REx system) assays acted as h5-HT2B agonists (4-substituent = H, F, Br, I, OCH2CH3, NO2, nC3H7, tC4H9) and two (n-hexyl and benzyl) as antagonists, iv) h5-HT2B affinity but not action was correlated with the lipophilicity of the 4-position substituent (r = 0.750; n = 10). The findings suggest that h5-HT2B receptor affinity, and its relationship to substituent lipophilicity, might be approximated by rat and h5-HT2A affinity but cannot be used as a predictor of h5-HT2B agonist action of 2,5-DMA analogs. Furthermore, given that certain 2,5-DMA analogs are on the clandestine market, their potential to produce cardiac side effects following persistent or chronic use via activation of h5-HT2B receptors should be considered.

16.
Psychopharmacology (Berl) ; 240(4): 969-981, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36802016

RESUMO

Drug self-administration and intracranial self-stimulation (ICSS) are two preclinical behavioral procedures used to predict abuse potential of drugs, and abuse-related drug effects in both procedures are thought to depend on increased mesolimbic dopamine (DA) signaling. Drug self-administration and ICSS yield concordant metrics of abuse potential across a diverse range of drug mechanisms of action. The "rate of onset," defined as the velocity with which a drug produces its effect once administered, has also been implicated as a determinant of abuse-related drug effects in self-administration procedures, but this variable has not been systematically examined in ICSS. Accordingly, this study compared ICSS effects produced in rats by three DA transporter inhibitors that have different rates of onset (fastest to slowest: cocaine, WIN-35428, RTI-31) and that produced progressively weaker metrics of abuse potential in a drug self-administration procedure in rhesus monkeys. Additionally, in vivo photometry using the fluorescent DA sensor dLight1.1 targeted to the nucleus accumbens (NAc) was used to assess the time course of extracellular DA levels as a neurochemical correlate of behavioral effects. All three compounds produced ICSS facilitation and increased DA levels assessed by dLight. In both procedures, the rank order of onset rate was cocaine > WIN-35428 > RTI-31; however, in contrast to monkey drug self-administration results, maximum effects did not differ across compounds. These results provide additional evidence that drug-induced increases in DA drive ICSS facilitation in rats and illustrate the utility of both ICSS and photometry to evaluate the time course and magnitude of abuse-related drug effects in rats.


Assuntos
Cocaína , Dopamina , Ratos , Animais , Dopamina/farmacologia , Autoestimulação , Ratos Sprague-Dawley , Proteínas da Membrana Plasmática de Transporte de Dopamina , Cocaína/farmacologia , Núcleo Accumbens
17.
J Biol Chem ; 285(50): 39171-9, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20937810

RESUMO

In the absence of store depletion, plasmalemmal Ca(2+) permeability in resting muscle is very low, and its contribution in the maintenance of Ca(2+) homeostasis at rest has not been studied in detail. Junctophilin 1 knock-out myotubes (JP1 KO) have a severe reduction in store-operated Ca(2+) entry, presumably caused by physical alteration of the sarcoplasmic reticulum (SR) and T-tubule junction, leading to disruption of the SR signal sent by Stim1 to activate Orai1. Using JP1 KO myotubes as a model, we assessed the contribution of the Orai1-mediated Ca(2+) entry pathway on overall Ca(2+) homeostasis at rest with no store depletion. JP1 KO myotubes have decreased Ca(2+) entry, [Ca(2+)](rest), and intracellular Ca(2+) content compared with WT myotubes and unlike WT myotubes, are refractory to BTP2, a Ca(2+) entry blocker. JP1 KO myotubes show down-regulation of Orai1 and Stim1 proteins, suggesting that this pathway may be important in the control of resting Ca(2+) homeostasis. WT myotubes stably transduced with Orai1(E190Q) had similar alterations in their resting Ca(2+) homeostasis as JP1 KO myotubes and were also unresponsive to BTP2. JP1 KO cells show decreased expression of TRPC1 and -3 but overexpress TRPC4 and -6; on the other hand, the TRPC expression profile in Orai1(E190Q) myotubes was comparable with WT. These data suggest that an important fraction of resting plasmalemmal Ca(2+) permeability is mediated by the Orai1 pathway, which contributes to the control of [Ca(2+)](rest) and resting Ca(2+) stores and that this pathway is defective in JP1 KO myotubes.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Proteínas de Membrana/genética , Fibras Musculares Esqueléticas/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Cálcio/química , Canais de Cálcio/química , Humanos , Cinética , Camundongos , Camundongos Knockout , Microeletrodos , Músculo Esquelético/metabolismo , Proteína ORAI1 , Permeabilidade
18.
J Biol Chem ; 285(18): 13781-7, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20207743

RESUMO

The control of resting free Ca(2+) in skeletal muscle is thought to be a balance of channels, pumps, and exchangers in both the sarcolemma and sarcoplasmic reticulum. We explored these mechanisms using pharmacologic and molecular perturbations of genetically engineered (dyspedic) muscle cells that constitutively lack expression of the skeletal muscle sarcoplasmic reticulum Ca(2+) release channels, RyR1 and RyR3. We demonstrate here that expression of RyR1 is responsible for more than half of total resting Ca(2+) concentration ([Ca(2+)](rest)) measured in wild type cells. The elevated [Ca(2+)](rest) in RyR1-expressing cells is not a result of active gating of the RyR1 channel but instead is accounted for by the RyR1 ryanodine-insensitive Ca(2+) leak conformation. In addition, we demonstrate that basal sarcolemmal Ca(2+) influx is also governed by RyR1 expression and contributes in the regulation of [Ca(2+)](rest) in skeletal myotubes.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Ativação do Canal Iônico/fisiologia , Camundongos , Camundongos Mutantes , Poríferos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sarcolema/genética , Retículo Sarcoplasmático/genética
19.
J Biol Chem ; 285(49): 38453-62, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20926377

RESUMO

Previously, we have shown that lack of expression of triadins in skeletal muscle cells results in significant increase of myoplasmic resting free Ca(2+) ([Ca(2+)](rest)), suggesting a role for triadins in modulating global intracellular Ca(2+) homeostasis. To understand this mechanism, we study here how triadin alters [Ca(2+)](rest), Ca(2+) release, and Ca(2+) entry pathways using a combination of Ca(2+) microelectrodes, channels reconstituted in bilayer lipid membranes (BLM), Ca(2+), and Mn(2+) imaging analyses of myotubes and RyR1 channels obtained from triadin-null mice. Unlike WT cells, triadin-null myotubes had chronically elevated [Ca(2+)](rest) that was sensitive to inhibition with ryanodine, suggesting that triadin-null cells have increased basal RyR1 activity. Consistently, BLM studies indicate that, unlike WT-RyR1, triadin-null channels more frequently display atypical gating behavior with multiple and stable subconductance states. Accordingly, pulldown analysis and fluorescent FKBP12 binding studies in triadin-null muscles revealed a significant impairment of the FKBP12/RyR1 interaction. Mn(2+) quench rates under resting conditions indicate that triadin-null cells also have higher Ca(2+) entry rates and lower sarcoplasmic reticulum Ca(2+) load than WT cells. Overexpression of FKBP12.6 reverted the null phenotype, reducing resting Ca(2+) entry, recovering sarcoplasmic reticulum Ca(2+) content levels, and restoring near normal [Ca(2+)](rest). Exogenous FKBP12.6 also reduced the RyR1 channel P(o) but did not rescue subconductance behavior. In contrast, FKBP12 neither reduced P(o) nor recovered multiple subconductance gating. These data suggest that elevated [Ca(2+)](rest) in triadin-null myotubes is primarily driven by dysregulated RyR1 channel activity that results in part from impaired FKBP12/RyR1 functional interactions and a secondary increased Ca(2+) entry at rest.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Ativação do Canal Iônico/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Proteínas de Transporte/genética , Citoplasma/genética , Peptídeos e Proteínas de Sinalização Intracelular , Manganês/metabolismo , Camundongos , Camundongos Mutantes , Fibras Musculares Esqueléticas/citologia , Proteínas Musculares/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Proteínas de Ligação a Tacrolimo/genética
20.
Neuropharmacology ; 200: 108820, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619165

RESUMO

Clandestine chemists are currently exploiting the pyrrolidinophenone scaffold to develop new designer drugs that carry the risk of abuse and overdose. These drugs promote addiction through the rewarding effects of increased dopaminergic neurotransmission. 3,4-Methylenedioxypyrovalerone (MDPV) and its analogs are illicit psychostimulants of this class that are ∼50-fold more potent than cocaine at inhibiting the human dopamine transporter (hDAT). In contrast, MDPV is a weak inhibitor at both the human serotonin transporter (hSERT) and, as it is shown here, the Drosophila melanogaster DAT (dDAT). We studied three conserved residues between hSERT and dDAT that are unique in hDAT (A117, F318, and P323 in dDAT), and one residue that is different in all three transporters (D121 in dDAT). hDAT residues were replaced in the dDAT sequence at these positions using site-directed mutagenesis and stable cell lines were generated expressing these mutant transporters. The potencies of MDPV and two of its analogs were determined using a Ca2+-mobilization assay. In this assay, voltage-gated Ca2+ channels are expressed to sense the membrane electrical depolarization evoked when dopamine is transported through DAT. Each individual mutant slightly improved MDPV's potency, but the combination of all four increased its potency ∼100-fold (2 log units) in inhibiting dDAT activity. Molecular modeling and docking studies were conducted to explore the possible mode of interaction between MDPV and DAT in silico. Two of the studied residues (F318 and P323) are at the entrance of the S1 binding site, whereas the other two (A117 and D121) face the aryl moiety of MDPV when bound to this site. Therefore, these four non-conserved residues can influence MDPV selectivity not only by stabilizing binding, but also by controlling access to its binding site at DAT.


Assuntos
Benzodioxóis/farmacologia , Drogas Desenhadas/química , Drogas Desenhadas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Pirrolidinas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Animais , Benzodioxóis/química , Transporte Biológico/efeitos dos fármacos , Canais de Cálcio/efeitos dos fármacos , Linhagem Celular , Inibidores da Captação de Dopamina/farmacologia , Drosophila melanogaster , Simulação de Acoplamento Molecular , Pirrolidinas/química , Catinona Sintética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa