Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Gynecol Oncol ; 139(1): 97-103, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26321251

RESUMO

OBJECTIVE: Comparisons of The Cancer Genome Atlas (TCGA) with high grade serous ovarian cancer (HGSOC) cell lines used in research reveal that many common experimental models lack defining genomic characteristics seen in patient tumors. As cell lines exist with higher genomic fidelity to TCGA, this study aimed to evaluate the utility of these cell lines as tools for preclinical investigation. METHODS: We compared two HGSOC cell lines with supposed high genomic fidelity to TCGA, KURAMOCHI and OVSAHO, with the most commonly cited ovarian cancer cell line, SKOV3, which has poor genomic fidelity to TCGA. The lines were analyzed for genomic alterations, in vitro performance, and growth in murine xenografts. RESULTS: Using targeted next generation sequencing analyses, we determined that each line had a distinct mutation profile, including alterations in TP53, and copy number variation of specific genes. KURAMOCHI and OVSAHO better recapitulated serous carcinoma morphology than SKOV3. All lines expressed PAX8 and stathmin, but KURAMOCHI and OVSAHO did not express CK7. KURAMOCHI was significantly more platinum sensitive than OVSAHO and SKOV3. Unlike SKOV3, KURAMOCHI and OVSAHO engrafted poorly in subcutaneous xenografts. KURAMOCHI and OVSAHO grew best after intraperitoneal injection in SCID mice and recapitulated miliary disease while SKOV3 grew in all murine systems and formed oligometastatic disease. CONCLUSIONS: The research utility of HGSOC cell line models requires a comprehensive assessment of genomic as well as in vitro and in vivo properties. Cell lines with closer genomic fidelity to human tumors may have limitations in performance for preclinical investigation.


Assuntos
Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Animais , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Camundongos SCID
2.
Reprod Biol Endocrinol ; 12: 60, 2014 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-24997727

RESUMO

Ovulation has long been associated with an increased risk in ovarian cancer, yet the underlying molecular mechanisms remain obscure. Two aspects of ovulation have been linked to ovarian cancer pathogenesis. The first is the impact of repetitive tissue injury and repair that occurs with each ovulatory event. The second is the release of follicular fluid that accompanies the follicular rupture and its effect on the ovarian and fallopian tube epithelial cells. Hormones are an important component of follicular fluid, which transiently bathes the ovarian surface and fallopian tube epithelium during ovulation. Much work has been done exploring the role of hormones in fertility, but some, such as estrogen, have also been implicated in the pathogenesis of ovarian and other cancers. Understanding the role of hormones within follicular fluid, as well as how they are altered in disorders which increase ovarian cancer risk, will enhance our ability to assess risk and develop preventative strategies. This review provides an in depth discussion of the logistics of using and studying follicular fluid in ovarian cancer research, and discusses the fluctuations in follicular fluid hormone levels during normal physiological processes versus conditions that increase ovarian cancer risk.


Assuntos
Biomarcadores Tumorais/análise , Transformação Celular Neoplásica , Líquido Folicular/química , Hormônios Gonadais/análise , Modelos Biológicos , Neoplasias Ovarianas/etiologia , Ovulação , Animais , Biomarcadores Tumorais/metabolismo , Feminino , Líquido Folicular/metabolismo , Hormônios Gonadais/metabolismo , Humanos , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/metabolismo , Fatores de Risco
3.
JCI Insight ; 1(13)2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27617304

RESUMO

Regulation of lineage-restricted transcription factors has been shown to influence malignant transformation in several types of cancer. Whether similar mechanisms are involved in ovarian cancer pathogenesis is unknown. PAX8 is a nuclear transcription factor that controls the embryologic development of the Müllerian system, including the fallopian tubes. Recent studies have shown that fallopian tube secretory epithelial cells (FTSECs) give rise to the most common form of ovarian cancer, high-grade serous ovarian carcinomas (HGSOCs). We designed the present study in order to understand whether changes in gene expression between FTSECs and HGSOCs relate to alterations in PAX8 binding to chromatin. Using whole transcriptome shotgun sequencing (RNA-Seq) after PAX8 knockdown and ChIP-Seq, we show that FTSECs and HGSOCs are distinguished by marked reprogramming of the PAX8 cistrome. Genes that are significantly altered between FTSECs and HGSOCs are enriched near PAX8 binding sites. These sites are also near TEAD binding sites, and these transcriptional changes may be related to PAX8 interactions with the TEAD/YAP1 signaling pathway. These data suggest that transcriptional changes after transformation in ovarian cancer are closely related to epigenetic remodeling in lineage-specific transcription factors.

4.
Genes Cancer ; 6(3-4): 153-68, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26000098

RESUMO

Since the neoplastic phenotype of a cell is largely driven by aberrant gene expression patterns, increasing attention has been focused on transcription factors that regulate critical mediators of tumorigenesis such as signal transducer and activator of transcription 3 (STAT3). As proteins that interact with STAT3 may be key in addressing how STAT3 contributes to cancer pathogenesis, we took a proteomics approach to identify novel STAT3-interacting proteins. We performed mass spectrometry-based profiling of STAT3-containing complexes from breast cancer cells that have constitutively active STAT3 and are dependent on STAT3 function for survival. We identified granulin (GRN) as a novel STAT3-interacting protein that was necessary for both constitutive and maximal leukemia inhibitory factor (LIF)induced STAT3 transcriptional activity. GRN enhanced STAT3 DNA binding and also increased the time-integrated amount of LIF-induced STAT3 activation in breast cancer cells. Furthermore, silencing GRN neutralized STAT3-mediated tumorigenic phenotypes including viability, clonogenesis, and migratory capacity. In primary breast cancer samples, GRN mRNA levels were positively correlated with STAT3 gene expression signatures and with reduced patient survival. These studies identify GRN as a functionally important STAT3-interacting protein that may serve as an important prognostic biomarker and potential therapeutic target in breast cancer.

5.
Am J Surg Pathol ; 39(10): 1411-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26135559

RESUMO

GATA3 is a transcription factor critical for embryogenesis, development, and cell differentiation. Recent studies have suggested that GATA3 is a sensitive and relatively specific biomarker for urothelial and breast carcinomas, with most Müllerian carcinomas being negative. We investigated GATA3 expression in mesonephric/Wolffian remnants and tumors in the female genital tract. A western blot was performed to assess specificity for the GATA3 antibody. GATA3 immunohistochemistry was performed on 59 formalin-fixed paraffin-embedded mesonephric samples, including 17 mesonephric remnants (MR; 11 cervical and 6 fallopian tube), 15 mesonephric hyperplasias, 21 mesonephric carcinomas, and 6 female adnexal tumors of probable Wolffian origin. Thirty conventional endocervical adenocarcinomas (ENDO-CA), 9 gastric-type cervical adenocarcinomas, and 165 endometrial adenocarcinomas (EM-CA) were also evaluated. GATA3 nuclear intensity and extent of staining was evaluated. The western blot revealed GATA3 expression in seminal vesicle and cell lines derived from breast and urothelial carcinomas, but not in other cell lines including ovarian, cervical, and endometrial cancers. All cervical MRs and mesonephric hyperplasias, 5/6 (83%) fallopian tube MRs, and 20/21 (95%) mesonephric carcinomas were GATA3 positive, although with great variability in both intensity (weak to strong) and extent (1+ to 3+) of staining. Only 1/6 (17%) female adnexal tumors of probable Wolffian origin showed weak multifocal staining. One of 30 (3%) usual-type ENDO-CAs and 3/165 EM-CAs exhibited weak-moderate GATA3 immunoreactivity; all gastric-type cervical adenocarcinomas were negative. GATA3 is a highly sensitive and specific marker for mesonephric lesions in the lower genital tract; however, its utility in the upper genital tract may be more limited. In addition, GATA3 can aid in distinguishing lower genital mesonephric lesions from usual-type and gastric-type ENDO-CAs and uterine EM-CAs.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias do Endométrio/metabolismo , Neoplasias das Tubas Uterinas/metabolismo , Fator de Transcrição GATA3/metabolismo , Neoplasias de Anexos e de Apêndices Cutâneos/metabolismo , Ductos Mesonéfricos/metabolismo , Adenocarcinoma/patologia , Western Blotting , Boston , Linhagem Celular Tumoral , Diagnóstico Diferencial , Neoplasias do Endométrio/patologia , Neoplasias das Tubas Uterinas/patologia , Feminino , Humanos , Imuno-Histoquímica , Neoplasias de Anexos e de Apêndices Cutâneos/patologia , Irlanda do Norte , Valor Preditivo dos Testes , Ductos Mesonéfricos/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa