RESUMO
ABSTRACT: In the development of various strategies of anti-CD19 immunotherapy for the treatment of B-cell malignancies, it remains unclear whether CD19 monoclonal antibody therapy impairs subsequent CD19-targeted chimeric antigen receptor T-cell (CART19) therapy. We evaluated the potential interference between the CD19-targeting monoclonal antibody tafasitamab and CART19 treatment in preclinical models. Concomitant treatment with tafasitamab and CART19 showed major CD19 binding competition, which led to CART19 functional impairment. However, when CD19+ cell lines were pretreated with tafasitamab overnight and the unbound antibody was subsequently removed from the culture, CART19 function was not affected. In preclinical in vivo models, tafasitamab pretreatment demonstrated reduced incidence and severity of cytokine release syndrome and exhibited superior antitumor effects and overall survival compared with CART19 alone. This was associated with transient CD19 occupancy with tafasitamab, which in turn resulted in the inhibition of CART19 overactivation, leading to diminished CAR T apoptosis and pyroptosis of tumor cells.
Assuntos
Anticorpos Monoclonais Humanizados , Imunoterapia , Índice Terapêutico , Antígenos CD19 , Imunoterapia Adotiva/métodosRESUMO
Tafasitamab is an Fc-modified monoclonal antibody that binds to CD19, a cell-surface antigen that is broadly expressed on various types of B-cell non-Hodgkin's lymphoma (NHL). Antibody-dependent cellular cytotoxicity (ADCC), a key mode of action of tafasitamab, is mediated through the binding of tafasitamab's Fc region to FcγRIIIa receptors on immune effector cells and results in antitumor activity. Despite the proven clinical activity of tafasitamab in combination with lenalidomide in the treatment of diffuse large B-cell lymphoma (DLBCL), a higher number of immune cells in cancer patients may improve the activity of tafasitamab. Here, we characterized two ex vivo-expanded FcγRIIIa receptor-expressing cell types-γδ T and MG4101 natural killer (NK) cells-as effector cells for tafasitamab in vitro, and found that in the presence of these cells tafasitamab was able to induce ADCC against a range of NHL cell lines and patient-derived cells. We also explored the concept of effector cell supplementation during tafasitamab treatment in vivo by coadministering MG4101 NK cells in Raji and Ramos xenograft models of NHL. Combination treatment of tafasitamab and allogeneic MG4101 NK cells in these models demonstrated a survival benefit compared with tafasitamab or MG4101 monotherapy (Raji: 1.7- to 1.9-fold increase in lifespan; Ramos: 2.0- to 4.1-fold increase in lifespan). In conclusion, adoptive cell transfer of ex vivo-expanded allogeneic NK or autologous γδ T cells in combination with tafasitamab treatment may potentially be a promising novel approach to increase the number of immune effector cells and enhance the antitumor effect of tafasitamab.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma Difuso de Grandes Células B , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Citotoxicidade Celular Dependente de Anticorpos , Antígenos de Superfície , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Rituximab/farmacologiaRESUMO
Background: Despite recent advances in the treatment of aggressive lymphomas, a significant fraction of patients still succumbs to their disease. Thus, novel therapies are urgently needed. As the anti-CD20 antibody rituximab and the CD19-targeting antibody tafasitamab share distinct modes of actions, we investigated if dual-targeting of aggressive lymphoma B-cells by combining rituximab and tafasitamab might increase cytotoxic effects. Methods: Antibody single and combination efficacy was determined investigating different modes of action including direct cytotoxicity, antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) in in vitro and in vivo models of aggressive B-cell lymphoma comprising diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL). Results: Three different sensitivity profiles to antibody monotherapy or combination treatment were observed in in vitro models: while 1/11 cell lines was primarily sensitive to tafasitamab and 2/11 to rituximab, the combination resulted in enhanced cell death in 8/11 cell lines in at least one mode of action. Treatment with either antibody or the combination resulted in decreased expression of the oncogenic transcription factor MYC and inhibition of AKT signaling, which mirrored the cell line-specific sensitivities to direct cytotoxicity. At last, the combination resulted in a synergistic survival benefit in a PBMC-humanized Ramos NOD/SCID mouse model. Conclusion: This study demonstrates that the combination of tafasitamab and rituximab improves efficacy compared to single-agent treatments in models of aggressive B-cell lymphoma in vitro and in vivo.
Assuntos
Linfoma de Burkitt , Linfoma Difuso de Grandes Células B , Camundongos , Animais , Camundongos Endogâmicos NOD , Camundongos SCID , Rituximab/farmacologia , Rituximab/uso terapêutico , Leucócitos Mononucleares , Anticorpos Monoclonais Humanizados , Linfoma de Burkitt/tratamento farmacológico , Linfoma Difuso de Grandes Células B/tratamento farmacológicoAssuntos
Anticorpos Monoclonais Humanizados , Linfoma Difuso de Grandes Células B , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Humanos , Lenalidomida , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/etiologiaRESUMO
In spite of development of molecular therapeutics, multiple myeloma (MM) is fatal in most cases. CD38 is a promising target for selective treatment of MM. We tested radioimmunoconjugates consisting of the α-emitter ²¹³Bi coupled to an anti-CD38 MAb in preclinical treatment of MM. Efficacy of ²¹³Bi-anti-CD38-MAb was assayed towards different MM cell lines with regard to induction of DNA double-strand breaks, induction of apoptosis and initiation of cell cycle arrest. Moreover, mice bearing luciferase-expressing MM xenografts were treated with ²¹³Bi-anti-CD38-MAb. Therapeutic efficacy was monitored by bioluminescence imaging, overall survival and histology. ²¹³Bi-anti-CD38-MAb treatment induced DNA damage which did not result in activation of the G2 DNA-damage-response checkpoint, but instead in mitotic arrest and subsequent mitotic catastrophe. The anti-tumor effect of ²¹³Bi-anti-CD38-MAb correlated with the expression level of CD38 in each MM cell line. In myeloma xenografts, treatment with ²¹³Bi-anti-CD38-MAb suppressed tumor growth via induction of apoptosis in tumor tissue and significantly prolonged survival compared to controls. The major organ systems did not show any signs of ²¹³Bi-induced toxicity. Preclinical treatment of MM with ²¹³Bi-anti-CD38-MAb turned out as an effective therapeutic option.
Assuntos
ADP-Ribosil Ciclase 1/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Bismuto/farmacologia , Imunoconjugados/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/radioterapia , Radioimunoterapia , ADP-Ribosil Ciclase 1/imunologia , Partículas alfa/uso terapêutico , Animais , Apoptose/imunologia , Apoptose/efeitos da radiação , Western Blotting , Ciclo Celular/imunologia , Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Citometria de Fluxo , Humanos , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
This study describes a novel assay to visualize the macromolecular permeability of epithelial and endothelial cell layers with subcellular lateral resolution. Defects within the cell layer and details about the permeation route of the migrating solute are revealed. The assay is based on silicon chips with densely packed, highly ordered, dead-ended pores of µm-diameters on one side. The cells under study are grown on the porous side of the chip such that the pores in the growth surface serve as an array of femtolitre-sized cuvettes in which the permeating probe accumulates at the site of permeation. The pattern of pore filling reveals the permeability characteristics of the cell layer with a lateral resolution in the µm range. Coating of the chip surface with a thin layer of gold allows for impedance analysis of the adherent cells in order to measure their tightness for inorganic ions at the same time. The new assay provides an unprecedented look on epithelial and endothelial barrier function.
Assuntos
Células Epiteliais/metabolismo , Análise em Microsséries/instrumentação , Silício/química , Animais , Linhagem Celular , Permeabilidade da Membrana Celular , Cães , Ouro/química , Íons/metabolismo , Porosidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Propriedades de SuperfícieRESUMO
Recent work has identified L1CAM (CD171) as a novel marker for human carcinoma progression. Functionally, L1CAM promotes tumor cell invasion and motility, augments tumor growth in nude mice, and facilitates experimental tumor metastasis. These functional features qualify L1 as an interesting target molecule for tumor therapy. Here, we generated a series of novel monoclonal antibodies (mAb) to the L1CAM ectodomain that were characterized by biochemical and functional means. All novel mAbs reacted specifically with L1CAM and not with the closely related molecule CHL1, whereas antibodies to the COOH terminal part of L1CAM (mAb2C2, mAb745H7, pcytL1) showed cross-reactivity. Among the novel mAbs, L1-9.3 was selected and its therapeutic potential was analyzed in various isotype variants in a model of SKOV3ip cells growing i.p. in CD1 nude mice. Only therapy with the IgG2a variant efficiently prolonged survival and reduced tumor burden. This was accompanied by an increased infiltration of F4/80-positive monocytic cells. Clodronate pretreatment of tumor-bearing animals led to the depletion of monocytes and abolished the therapeutic effect of L1-9.3/IgG2a. Expression profiling of tumor-derived mRNA revealed that L1-9.3/IgG2a therapy induced altered expression of cellular genes associated with apoptosis and tumor growth. Our results establish that anti-L1 mAb therapy acts via immunologic and nonimmunologic effector mechanism to block tumor growth. The novel antibodies to L1CAM could become helpful tools for the therapy of L1-positive human carcinomas.
Assuntos
Anticorpos Monoclonais/farmacologia , Molécula L1 de Adesão de Célula Nervosa/imunologia , Neoplasias Ovarianas/terapia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Reações Cruzadas , Epitopos/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Camundongos , Camundongos Nus , Molécula L1 de Adesão de Célula Nervosa/antagonistas & inibidores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Viruses are being exploited as vectors to deliver therapeutic genetic information into target cells. The success of this approach will depend on the ability to overcome current limitations, especially in terms of safety and efficiency, through molecular engineering of the viral particles. METHODS: Here we show that in vitro directed evolution can be successfully performed to randomize the viral capsid by error prone PCR and to obtain mutants with improved phenotype. RESULTS: To demonstrate the potential of this technology we selected several adeno-associated virus (AAV) capsid variants that are less efficiently neutralized by human antibodies. These mutations can be used to generate novel vectors for the treatment of patients with pre-existing immunity to AAV. CONCLUSIONS: Our results demonstrate that combinatorial engineering overcomes the limitations of rational design approaches posed by incomplete understanding of the infectious process and at the same time offers a powerful tool to dissect basic viral biology by reverse genetics.
Assuntos
Dependovirus/genética , Evolução Molecular Direcionada , Vetores Genéticos , Sequência de Aminoácidos , Dependovirus/imunologia , Terapia Genética , Vetores Genéticos/imunologia , Células HeLa , Humanos , Tolerância Imunológica , Dados de Sequência Molecular , Mutação , Reação em Cadeia da PolimeraseRESUMO
Adeno-associated virus type 2 (AAV-2) targeting vectors have been generated by insertion of ligand peptides into the viral capsid at amino acid position 587. This procedure ablates binding of heparan sulfate proteoglycan (HSPG), AAV-2's primary receptor, in some but not all mutants. Using an AAV-2 display library, we investigated molecular mechanisms responsible for this phenotype, demonstrating that peptides containing a net negative charge are prone to confer an HSPG nonbinding phenotype. Interestingly, in vivo studies correlated the inability to bind to HSPG with liver and spleen detargeting in mice after systemic application, suggesting several strategies to improve efficiency of AAV-2 retargeting to alternative tissues.
Assuntos
Dependovirus/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Modelos Moleculares , Mutação , Receptores Virais/metabolismo , Substituição de Aminoácidos , Animais , Dependovirus/genética , Marcação de Genes , Vetores Genéticos/genética , Fígado/metabolismo , Fígado/virologia , Camundongos , Especificidade de Órgãos/genética , Biblioteca de Peptídeos , Ligação Proteica/genética , Estrutura Terciária de Proteína , Receptores Virais/genética , Baço/metabolismo , Baço/virologia , Transdução GenéticaRESUMO
To allow the direct visualization of viral trafficking, we genetically incorporated enhanced green fluorescent protein (GFP) into the adeno-associated virus (AAV) capsid by replacement of wild-type VP2 by GFP-VP2 fusion proteins. High-titer virus progeny was obtained and used to elucidate the process of nuclear entry. In the absence of adenovirus 5 (Ad5), nuclear translocation of AAV capsids was a slow and inefficient process: at 2 h and 4 h postinfection (p.i.), GFP-VP2-AAV particles were found in the perinuclear area and in nuclear invaginations but not within the nucleus. In Ad5-coinfected cells, isolated GFP-VP2-AAV particles were already detectable in the nucleus at 2 h p.i., suggesting that Ad5 enhanced the nuclear translocation of AAV capsids. The number of cells displaying viral capsids within the nucleus increased slightly over time, independently of helper virus levels, but the majority of the AAV capsids remained in the perinuclear area under all conditions analyzed. In contrast, independently of helper virus and with 10 times less virions per cell already observed at 2 h p.i., viral genomes were visible within the nucleus. Under these conditions and even with prolonged incubation times (up to 11 h p.i.), no intact viral capsids were detectable within the nucleus. In summary, the results show that GFP-tagged AAV particles can be used to study the cellular trafficking and nuclear entry of AAV. Moreover, our findings argue against an efficient nuclear entry mechanism of intact AAV capsids and favor the occurrence of viral uncoating before or during nuclear entry.