Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 204(3): 644-659, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862711

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to be a major global health problem. Lung granulomas are organized structures of host immune cells that function to contain the bacteria. Cytokine expression is a critical component of the protective immune response, but inappropriate cytokine expression can exacerbate TB. Although the importance of proinflammatory cytokines in controlling M. tuberculosis infection has been established, the effects of anti-inflammatory cytokines, such as IL-10, in TB are less well understood. To investigate the role of IL-10, we used an Ab to neutralize IL-10 in cynomolgus macaques during M. tuberculosis infection. Anti-IL-10-treated nonhuman primates had similar overall disease outcomes compared with untreated control nonhuman primates, but there were immunological changes in granulomas and lymph nodes from anti-IL-10-treated animals. There was less thoracic inflammation and increased cytokine production in lung granulomas and lymph nodes from IL-10-neutralized animals at 3-4 wk postinfection compared with control animals. At 8 wk postinfection, lung granulomas from IL-10-neutralized animals had reduced cytokine production but increased fibrosis relative to control animals. Although these immunological changes did not affect the overall disease burden during the first 8 wk of infection, we paired computational modeling to explore late infection dynamics. Our findings support that early changes occurring in the absence of IL-10 may lead to better bacterial control later during infection. These unique datasets provide insight into the contribution of IL-10 to the immunological balance necessary for granulomas to control bacterial burden and disease pathology in M. tuberculosis infection.


Assuntos
Granuloma/imunologia , Inflamação/imunologia , Interleucina-10/metabolismo , Pulmão/patologia , Linfonodos/imunologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunidade , Pulmão/imunologia , Macaca fascicularis , Fibrose Pulmonar
2.
Biochemistry ; 60(22): 1731-1740, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029457

RESUMO

The retrovirus HIV-1 is the etiological agent of the decades-long AIDS pandemic. Although vaccination is the most common preexposure route to prevent acquisition of viral disease, scalable efficacious vaccination strategies have yet to be developed for HIV-1. By contrast, small molecule inhibitors of the HIV-1 enzymes reverse transcriptase, integrase, and protease have been developed that effectively block virus replication. Three different drug compounds are commonly prescribed for people living with HIV as once-daily oral tablets. Once-daily pills composed of two different reverse transcriptase inhibitors are moreover approved as preexposure prophylaxis (PrEP) treatment for virus naïve individuals who may partake in behaviors associated with increased risk of HIV-1 acquisition such as unprotected sex or injection drug use. Long-acting (LA) injectable HIV-1 enzyme inhibitors are at the same time being developed to sidestep adherence noncompliance issues that can arise from self-administered once-daily oral dosing regimens. Cabotegravir (CAB)-LA, which inhibits integrase strand transfer activity, has in recent clinical trials been shown to prevent HIV-1 acquisition more effectively than once-daily oral dosed reverse transcriptase inhibitors. In this Perspective, we examine bench to bedside aspects of CAB-LA treatment and development, starting from the biochemical basis of HIV-1 integration and pharmacological inhibition of integrase catalysis. We also review the results of recent clinical trials that evaluated CAB-LA, as well as the promises and challenges that surround its use for HIV/AIDS PrEP.


Assuntos
Síndrome da Imunodeficiência Adquirida/prevenção & controle , HIV-1/efeitos dos fármacos , Piridonas/uso terapêutico , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Integrase de HIV/efeitos dos fármacos , Integrase de HIV/metabolismo , HIV-1/patogenicidade , Humanos , Profilaxia Pré-Exposição/métodos , Piridonas/metabolismo , Inibidores da Transcriptase Reversa/farmacologia
3.
Am J Transplant ; 20(1): 298-305, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430418

RESUMO

The antagonistic anti-CD40 antibody, 2C10, and its recombinant primate derivative, 2C10R4, are potent immunosuppressive antibodies whose utility in allo- and xenotransplantation have been demonstrated in nonhuman primate studies. In this study, we defined the 2C10 binding epitope and found only slight differences in affinity of 2C10 for CD40 derived from four primate species. Staining of truncation mutants mapped the 2C10 binding epitope to the N-terminal portion of CD40. Alanine scanning mutagenesis of the first 60 residues in the CD40 ectodomain highlighted key amino acids important for binding of 2C10 and for binding of the noncross-blocking anti-CD40 antibodies 3A8 and 5D12. All four 2C10-binding residues defined by mutagenesis clustered near the membrane-distal tip of CD40 and partially overlap the CD154 binding surface. In contrast, the overlapping 3A8 and 5D12 epitopes map to an opposing surface away from the CD154 binding domain. This biochemical characterization of 2C10 confirms the validity of nonhuman primate studies in the translation of this therapeutic antibody and provides insight its mechanism of action.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Epitopos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos CD40/química , Antígenos CD40/genética , Antígenos CD40/imunologia , Ligante de CD40/química , Ligante de CD40/genética , Ligante de CD40/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Humanos , Macaca mulatta , Mutação , Conformação Proteica , Homologia de Sequência de Aminoácidos
4.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205470

RESUMO

Treatment of people with HIV (PWH) with antiretroviral therapy (ART) results in sustained suppression of viremia, but HIV persists indefinitely as integrated provirus in CD4-expressing cells. Intact persistent provirus, the "rebound competent viral reservoir" (RCVR), is the primary obstacle to achieving a cure. Most variants of HIV enter CD4 + T cells by binding to the chemokine receptor, CCR5. The RCVR has been successfully depleted only in a handful of PWH following cytotoxic chemotherapy and bone marrow transplantation from donors with a mutation in CCR5 . Here we show that long-term SIV remission and apparent cure can be achieved for infant macaques via targeted depletion of potential reservoir cells that express CCR5. Neonatal rhesus macaques were infected with virulent SIVmac251, then treated with ART beginning one week after infection, followed by treatment with either a CCR5/CD3-bispecific or a CD4-specific antibody, both of which depleted target cells and increased the rate of plasma viremia decrease. Upon subsequent cessation of ART, three of seven animals treated with CCR5/CD3-bispecific antibody rebounded quickly and two rebounded 3 or 6 months later. Remarkably, the other two animals remained aviremic and efforts to detect replication-competent virus were unsuccessful. Our results show that bispecific antibody treatment can achieve meaningful SIV reservoir depletion and suggest that functional HIV cure might be achievable for recently infected individuals having a restricted reservoir.

5.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35316218

RESUMO

Proliferation of latently infected CD4+ T cells with replication-competent proviruses is an important mechanism contributing to HIV persistence during antiretroviral therapy (ART). One approach to targeting this latent cell expansion is to inhibit mTOR, a regulatory kinase involved with cell growth, metabolism, and proliferation. Here, we determined the effects of chronic mTOR inhibition with rapamycin with or without T cell activation in SIV-infected rhesus macaques (RMs) on ART. Rapamycin perturbed the expression of multiple genes and signaling pathways important for cellular proliferation and substantially decreased the frequency of proliferating CD4+ memory T cells (TM cells) in blood and tissues. However, levels of cell-associated SIV DNA and SIV RNA were not markedly different between rapamycin-treated RMs and controls during ART. T cell activation with an anti-CD3LALA antibody induced increases in SIV RNA in plasma of RMs on rapamycin, consistent with SIV production. However, upon ART cessation, both rapamycin and CD3LALA-treated and control-treated RMs rebounded in less than 12 days, with no difference in the time to viral rebound or post-ART viral load set points. These results indicate that, while rapamycin can decrease the proliferation of CD4+ TM cells, chronic mTOR inhibition alone or in combination with T cell activation was not sufficient to disrupt the stability of the SIV reservoir.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos , Proliferação de Células , Infecções por HIV/tratamento farmacológico , Macaca mulatta/genética , RNA , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/farmacologia , Carga Viral , Replicação Viral
6.
Cell Rep Med ; 2(7): 100352, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34337567

RESUMO

Epstein-Barr virus (EBV) and related lymphocryptoviruses (LCVs) from nonhuman primates are transmitted through oral secretions, penetrate the mucosal epithelium, and establish persistent infection in B cells. To determine whether neutralizing antibodies against epithelial or B cell infection could block oral transmission and persistent LCV infection, we use rhesus macaques, the most accurate animal model for EBV infection by faithfully reproducing acute and persistent infection in humans. Naive animals are infused with monoclonal antibodies neutralizing epithelial cell infection or B cell infection and then challenged orally with recombinant rhesus LCV. Our data show that high-titer B cell-neutralizing antibodies alone, but not epithelial cell-neutralizing antibodies, can provide complete protection of rhesus macaques from oral LCV challenge, but not in all hosts. Thus, neutralizing antibodies against B cell infection are important targets for EBV vaccine development, but they may not be sufficient.


Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/prevenção & controle , Herpesvirus Humano 4/imunologia , Administração Oral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/sangue , Lymphocryptovirus/imunologia , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa