Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(1): 319-331, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308149

RESUMO

PURPOSE: This study addresses the challenge of low resolution and signal-to-noise ratio (SNR) in diffusion-weighted images (DWI), which are pivotal for cancer detection. Traditional methods increase SNR at high b-values through multiple acquisitions, but this results in diminished image resolution due to motion-induced variations. Our research aims to enhance spatial resolution by exploiting the global structure within multicontrast DWI scans and millimetric motion between acquisitions. METHODS: We introduce a novel approach employing a "Perturbation Network" to learn subvoxel-size motions between scans, trained jointly with an implicit neural representation (INR) network. INR encodes the DWI as a continuous volumetric function, treating voxel intensities of low-resolution acquisitions as discrete samples. By evaluating this function with a finer grid, our model predicts higher-resolution signal intensities for intermediate voxel locations. The Perturbation Network's motion-correction efficacy was validated through experiments on biological phantoms and in vivo prostate scans. RESULTS: Quantitative analyses revealed significantly higher structural similarity measures of super-resolution images to ground truth high-resolution images compared to high-order interpolation (p < $$ < $$ 0.005). In blind qualitative experiments, 96 . 1 % $$ 96.1\% $$ of super-resolution images were assessed to have superior diagnostic quality compared to interpolated images. CONCLUSION: High-resolution details in DWI can be obtained without the need for high-resolution training data. One notable advantage of the proposed method is that it does not require a super-resolution training set. This is important in clinical practice because the proposed method can easily be adapted to images with different scanner settings or body parts, whereas the supervised methods do not offer such an option.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética , Imagens de Fantasmas , Próstata , Neoplasias da Próstata , Razão Sinal-Ruído , Humanos , Masculino , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Próstata/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Movimento (Física) , Reprodutibilidade dos Testes
2.
Radiology ; 305(2): 399-407, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35880981

RESUMO

Background Variability of acquisition and interpretation of prostate multiparametric MRI (mpMRI) persists despite implementation of the Prostate Imaging Reporting and Data System (PI-RADS) version 2.1 due to the range of reader experience and subjectivity of lesion characterization. A quantitative method, hybrid multidimensional MRI (HM-MRI), may introduce objectivity. Purpose To compare performance, interobserver agreement, and interpretation time of radiologists using mpMRI versus HM-MRI to diagnose clinically significant prostate cancer. Materials and Methods In this retrospective analysis, men with prostatectomy or MRI-fused transrectal US biopsy-confirmed prostate cancer underwent mpMRI (triplanar T2-weighted, diffusion-weighted, and dynamic contrast-enhanced imaging) and HM-MRI (with multiple echo times and b value combinations) from August 2012 to February 2020. Four readers with 1-20 years of experience interpreted mpMRI and HM-MRI examinations independently, with a 4-week washout period between interpretations. PI-RADS score, lesion location, and interpretation time were recorded. mpMRI and HM-MRI interpretation time, interobserver agreement (Cronbach alpha), and performance of area under the receiver operating characteristic curve (AUC) analysis were compared for each radiologist with use of bootstrap analysis. Results Sixty-one men (mean age, 61 years ± 8 [SD]) were evaluated. Per-patient AUC was higher for HM-MRI for reader 4 compared with mpMRI (AUCs for readers 1-4: 0.61, 0.71, 0.59, and 0.64 vs 0.66, 0.60, 0.50, and 0.46; P = .57, .20, .32, and .04, respectively). Per-patient specificity was higher for HM-MRI for readers 2-4 compared with mpMRI (specificity for readers 1-4: 48%, 78%, 48%, and 46% vs 37%, 26%, 0%, and 7%; P = .34, P < .001, P < .001, and P < .001, respectively). Diagnostic performance improved for the reader least experienced with HM-MRI, reader 4 (AUC, 0.64 vs 0.46; P = .04). HM-MRI interobserver agreement (Cronbach alpha = 0.88 [95% CI: 0.82, 0.92]) was higher than that of mpMRI (Cronbach alpha = 0.26 [95% CI: 0.10, 0.52]; α > .60 indicates reliability; P = .03). HM-MRI mean interpretation time (73 seconds ± 43 [SD]) was shorter than that of mpMRI (254 seconds ± 133; P = .03). Conclusion Radiologists had similar or improved diagnostic performance, higher interobserver agreement, and lower interpretation time for clinically significant prostate cancer with hybrid multidimensional MRI than multiparametric MRI. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Turkbey in this issue.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Radiologistas
3.
Magn Reson Med ; 88(5): 2298-2310, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35861268

RESUMO

PURPOSE: To evaluate and quantify inter-directional and inter-acquisition variation in diffusion-weighted imaging (DWI) and emphasize signals that report restricted diffusion to enhance cancer conspicuity, while reducing the effects of local microscopic motion and magnetic field fluctuations. METHODS: Ten patients with biopsy-proven prostate cancer were studied under an Institutional Review Board-approved protocol. Individual acquisitions of DWI signal intensities were reconstructed to calculate inter-acquisition distributions and their statistics, which were compared for healthy versus cancer tissue. A method was proposed to detect and filter the acquisitions affected by motion-induced signal loss. First, signals that reflect restricted diffusion were separated from the acquisitions that suffer from signal loss, likely due to microscopic motion, by imposing a cutoff value. Furthermore, corrected apparent diffusion coefficient maps were calculated by employing a weighted sum of the multiple acquisitions, instead of conventional averaging. These weights were calculated by applying a soft-max function to the set of acquisitions per-voxel, making the analysis immune to acquisitions with significant signal loss, even if the number of such acquisitions is high. RESULTS: Inter-acquisition variation is much larger than the Rician noise variance, local spatial variations, and the estimates of diffusion anisotropy based on the current data, as well as the published values of anisotropy. The proposed method increases the contrast for cancers and yields a sensitivity of 98 . 8 % $$ 98.8\% $$ with a false positive rate of 3 . 9 % $$ 3.9\% $$ . CONCLUSION: Motion-induced signal loss makes conventional signal-averaging suboptimal and can obscure signals from areas with restricted diffusion. Filtering or weighting individual acquisitions prior to image analysis can overcome this problem.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias da Próstata , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Movimento (Física) , Próstata , Neoplasias da Próstata/diagnóstico por imagem
4.
J Digit Imaging ; 34(4): 922-931, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34327625

RESUMO

Our objective is to investigate the reliability and usefulness of anatomic point-based lung zone segmentation on chest radiographs (CXRs) as a reference standard framework and to evaluate the accuracy of automated point placement. Two hundred frontal CXRs were presented to two radiologists who identified five anatomic points: two at the lung apices, one at the top of the aortic arch, and two at the costophrenic angles. Of these 1000 anatomic points, 161 (16.1%) were obscured (mostly by pleural effusions). Observer variations were investigated. Eight anatomic zones then were automatically generated from the manually placed anatomic points, and a prototype algorithm was developed using the point-based lung zone segmentation to detect cardiomegaly and levels of diaphragm and pleural effusions. A trained U-Net neural network was used to automatically place these five points within 379 CXRs of an independent database. Intra- and inter-observer variation in mean distance between corresponding anatomic points was larger for obscured points (8.7 mm and 20 mm, respectively) than for visible points (4.3 mm and 7.6 mm, respectively). The computer algorithm using the point-based lung zone segmentation could diagnostically measure the cardiothoracic ratio and diaphragm position or pleural effusion. The mean distance between corresponding points placed by the radiologist and by the neural network was 6.2 mm. The network identified 95% of the radiologist-indicated points with only 3% of network-identified points being false-positives. In conclusion, a reliable anatomic point-based lung segmentation method for CXRs has been developed with expected utility for establishing reference standards for machine learning applications.


Assuntos
Pulmão , Radiografia Torácica , Humanos , Pulmão/diagnóstico por imagem , Aprendizado de Máquina , Radiologistas , Reprodutibilidade dos Testes
5.
Pediatr Blood Cancer ; 65(12): e27417, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30198643

RESUMO

BACKGROUND: Radiolabeled metaiodobenzylguanidine (MIBG) is sensitive and specific for detecting neuroblastoma. The extent of MIBG-avid disease is assessed using Curie scores. Although Curie scoring is prognostic in patients with high-risk neuroblastoma, there is no standardized method to assess the response of specific sites of disease over time. The goal of this study was to develop approaches for Curie scoring to facilitate the calculation of scores and comparison of specific sites on serial scans. PROCEDURE: We designed three semiautomated methods for determining Curie scores, each with increasing degrees of computer assistance. Method A was based on visual assessment and tallying of MIBG-avid lesions. For method B, scores were tabulated from a schematic that associated anatomic regions to MIBG-positive lesions. For method C, an anatomic mesh was used to mark MIBG-positive lesions with automatic assignment and tallying of scores. Five imaging physicians experienced in MIBG interpretation scored 38 scans using each method, and the feasibility and utility of the methods were assessed using surveys. RESULTS: There was good reliability between methods and observers. The user-interface methods required 57 to 110 seconds longer than the visual method. Imaging physicians indicated that it was useful that methods B and C enabled tracking of lesions. Imaging physicians preferred method B to method C because of its efficiency. CONCLUSIONS: We demonstrate the feasibility of semiautomated approaches for Curie score calculation. Although more time was needed for strategies B and C, the ability to track and document individual MIBG-positive lesions over time is a strength of these methods.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Neuroblastoma/diagnóstico por imagem , Cintilografia/métodos , 3-Iodobenzilguanidina , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Adulto Jovem
6.
Quant Imaging Med Surg ; 14(3): 2580-2589, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38545076

RESUMO

Background: Imaging of peritoneal malignancies using conventional cross-sectional imaging is challenging, but accurate assessment of peritoneal disease burden could guide better selection for definitive surgery. Here we demonstrate feasibility of high-resolution, high-contrast magnetic resonance imaging (MRI) of peritoneal mesothelioma and explore optimal timing for delayed post-contrast imaging. Methods: Prospective data from inpatients with malignant peritoneal mesothelioma (MPM), imaged with a novel MRI protocol, were analyzed. The new sequences augmenting the clinical protocol were (I) pre-contrast coronal high-resolution T2-weighted single-shot fast spin echo (COR hr T2w SSH FSE) of abdomen and pelvis; and (II) post-contrast coronal high-resolution three-dimensional (3D) T1-weighted modified Dixon (COR hr T1w mDIXON) of abdomen, acquired at five delay times, up to 20 min after administration of a double dose of contrast agent. Quantitative analysis of contrast enhancement was performed using linear regression applied to normalized signal in lesion regions of interest (ROIs). Qualitative analysis was performed by three blinded radiologists. Results: MRI exams from 14 participants (age: mean ± standard deviation, 60±12 years; 71% male) were analyzed. The rate of lesion contrast enhancement was strongly correlated with tumor grade (cumulative nuclear score) (r=-0.65, P<0.02), with 'early' delayed phase (12 min post-contrast) and 'late' delayed phase (19 min post-contrast) performing better for higher grade and lower grade tumors, respectively, in agreement with qualitative scoring of image contrast. Conclusions: High-resolution, high-contrast MRI with extended post-contrast imaging is a viable modality for imaging peritoneal mesothelioma. Multiple, extended (up to 20 min post-contrast) delayed phases are necessary for optimal imaging of peritoneal mesothelioma, depending on the grade of disease.

7.
Abdom Radiol (NY) ; 48(10): 3216-3228, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37358605

RESUMO

PURPOSE: Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). METHODS: All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist's mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss' kappa inter-reader agreement was calculated and compared. RESULTS: Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). CONCLUSION: Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Masculino , Humanos , Imageamento por Ressonância Magnética , Neoplasias da Próstata/patologia , Estudos Retrospectivos , Próstata/patologia
8.
Eur Radiol ; 22(12): 2729-35, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22763504

RESUMO

OBJECTIVE: To evaluate radiologists' ability to detect focal pneumonia by use of standard chest radiographs alone compared with standard plus bone-suppressed chest radiographs. METHODS: Standard chest radiographs in 36 patients with 46 focal airspace opacities due to pneumonia (10 patients had bilateral opacities) and 20 patients without focal opacities were included in an observer study. A bone suppression image processing system was applied to the 56 radiographs to create corresponding bone suppression images. In the observer study, eight observers, including six attending radiologists and two radiology residents, indicated their confidence level regarding the presence of a focal opacity compatible with pneumonia for each lung, first by use of standard images, then with the addition of bone suppression images. Receiver operating characteristic (ROC) analysis was used to evaluate the observers' performance. RESULTS: The mean value of the area under the ROC curve (AUC) for eight observers was significantly improved from 0.844 with use of standard images alone to 0.880 with standard plus bone suppression images (P < 0.001) based on 46 positive lungs and 66 negative lungs. CONCLUSION: Use of bone suppression images improved radiologists' performance for detection of focal pneumonia on chest radiographs. KEY POINTS: Bone suppression image processing can be applied to conventional digital radiography systems. Bone suppression imaging (BSI) produces images that appear similar to dual-energy soft tissue images. BSI improves the conspicuity of focal lung disease by minimizing bone opacity. BSI can improve the accuracy of radiologists in detecting focal pneumonia.


Assuntos
Osso e Ossos/diagnóstico por imagem , Pneumonia/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Radiografia Torácica/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos , Software
9.
Radiology ; 261(3): 937-49, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21946054

RESUMO

PURPOSE: To determine whether use of bone suppression (BS) imaging, used together with a standard radiograph, could improve radiologists' performance for detection of small lung cancers compared with use of standard chest radiographs alone and whether BS imaging would provide accuracy equivalent to that of dual-energy subtraction (DES) radiography. MATERIALS AND METHODS: Institutional review board approval was obtained. The requirement for informed consent was waived. The study was HIPAA compliant. Standard and DES chest radiographs of 50 patients with 55 confirmed primary nodular cancers (mean diameter, 20 mm) as well as 30 patients without cancers were included in the observer study. A new BS imaging processing system that can suppress the conspicuity of bones was applied to the standard radiographs to create corresponding BS images. Ten observers, including six experienced radiologists and four radiology residents, indicated their confidence levels regarding the presence or absence of a lung cancer for each lung, first by using a standard image, then a BS image, and finally DES soft-tissue and bone images. Receiver operating characteristic (ROC) analysis was used to evaluate observer performance. RESULTS: The average area under the ROC curve (AUC) for all observers was significantly improved from 0.807 to 0.867 with BS imaging and to 0.916 with DES (both P < .001). The average AUC for the six experienced radiologists was significantly improved from 0.846 with standard images to 0.894 with BS images (P < .001) and from 0.894 to 0.945 with DES images (P = .001). CONCLUSION: Use of BS imaging together with a standard radiograph can improve radiologists' accuracy for detection of small lung cancers on chest radiographs. Further improvements can be achieved by use of DES radiography but with the requirement for special equipment and a potential small increase in radiation dose.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Radiografia Torácica/instrumentação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Interpretação de Imagem Radiográfica Assistida por Computador , Técnica de Subtração
10.
Med Phys ; 38(2): 915-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452728

RESUMO

PURPOSE: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. METHODS: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories ("nodule > or =3 mm," "nodule <3 mm," and "non-nodule > or =3 mm"). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. RESULTS: The Database contains 7371 lesions marked "nodule" by at least one radiologist. 2669 of these lesions were marked "nodule > or =3 mm" by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. CONCLUSIONS: The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.


Assuntos
Bases de Dados Factuais , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/normas , Diagnóstico por Computador , Humanos , Neoplasias Pulmonares/patologia , Controle de Qualidade , Interpretação de Imagem Radiográfica Assistida por Computador , Radiografia Torácica , Padrões de Referência , Carga Tumoral
11.
AJR Am J Roentgenol ; 196(5): W535-41, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21512042

RESUMO

OBJECTIVE: The purpose of this article is to evaluate radiologists' ability to detect subtle nodules by use of standard chest radiographs alone compared with bone suppression imaging used together with standard radiographs. MATERIALS AND METHODS: The cases used in this observer study comprised radiographs of 72 patients with a subtle nodule and 79 patients without nodules taken from the Japanese Society of Radiological Technology nodule database. A new image-processing system was applied to the 151 radiographs to create corresponding bone suppression images. Two image reading sets were used with an independent test method. The first reading included half of the patients (a randomly selected subset A) showing only the standard image and the remaining half (subset B) showing the standard image plus bone suppression images. The second reading entailed the same subsets; however, subset A was accompanied by bone suppression images, whereas subset B was shown with only the standard image. The two image sets were read by three experienced radiologists, with an interval of more than 2 weeks between the sessions. Receiver operating characteristic (ROC) curves, with and without localization, were obtained to evaluate the observers' performance. RESULTS: The mean value of the area under the ROC curve for the three observers was significantly improved, from 0.840 with standard radiographs alone to 0.863 with additional bone suppression images (p = 0.01). The area under the localization ROC curve was also improved with bone suppression imaging. CONCLUSION: The use of bone suppression images improved radiologists' performance in the detection of subtle nodules on chest radiographs.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Intensificação de Imagem Radiográfica , Radiografia Torácica , Nódulo Pulmonar Solitário/diagnóstico por imagem , Idoso , Competência Clínica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Curva ROC , Estudos Retrospectivos
12.
J Digit Imaging ; 24(4): 680-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20730471

RESUMO

In order to aid radiologists' routine work for interpreting bone scan images, we developed a computerized method for temporal subtraction (TS) images which can highlight interval changes between successive whole-body bone scans, and we performed a prospective clinical study for evaluating the clinical utility of the TS images. We developed a TS image server which includes an automated image-retrieval system, an automated image-conversion system, an automated TS image-producing system, a computer interface for displaying and evaluating TS images with five subjective scales, and an automated data-archiving system. In this study, the radiologist could revise his/her report after reviewing the TS images if the findings on the TS image were confirmed retrospectively on our clinical picture archiving and communication system. We had 256 consenting patients of whom 143 had two or more whole-body bone scans available for TS images. In total, we obtained TS images successfully in 292 (96.1%) pairs and failed to produce TS images in 12 pairs. Among the 292 TS studies used for diagnosis, TS images were considered as "extremely beneficial" or "somewhat beneficial" in 247 (84.6%) pairs, as "no utility" in 44 pairs, and as "somewhat detrimental" in only one pair. There was no TS image for any pairs that was considered "extremely detrimental." In addition, the radiologists changed their initial reported impression in 18 pairs (6.2%). The benefit to the radiologist of using TS images in the routine interpretation of successive whole-body bone scans was significant, with negligible detrimental effects.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Osso e Ossos/diagnóstico por imagem , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Cintilografia/métodos , Imagem Corporal Total/métodos , Idoso , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reconhecimento Automatizado de Padrão/métodos , Estudos Prospectivos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração , Medronato de Tecnécio Tc 99m/análogos & derivados
14.
Med Phys ; 36(12): 5675-82, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20095280

RESUMO

PURPOSE: Temporal subtraction is used to detect the interval change in chest radiographs and aid radiologists in patient diagnosis. This method registers two temporally different images by geometrically warping the lung region, or "lung mask," of a previous radiographic image to align with the current image. The gray levels of every pixel in the current image are subtracted from the gray levels of the corresponding pixels in the warped previous image to form a temporal subtraction image. While temporal subtraction images effectively enhance areas of pathologic change, misregistration of the images can mislead radiologists by obscuring the interval change or by creating artifacts that mimic change. The purpose of this study was to investigate the utility of mutual information computed between two registered radiographic chest images as a metric for distinguishing between clinically acceptable and clinically unacceptable temporal subtraction images. METHODS: A radiologist subjectively rated the image quality of 138 temporal subtraction images using a 1 (poor) to 5 (excellent) scale. To objectively assess the registration accuracy depicted in the temporal subtraction images, which is the main factor that affects the quality of these images, mutual information was computed on the two constituent registered images prior to their subtraction to generate a temporal subtraction image. Mutual information measures the joint entropy of the current image and the warped previous image, yielding a higher value when the gray levels of spatially matched pixels in each image are consistent. Mutual information values were correlated with the radiologist's subjective ratings. To improve this correlation, mutual information was computed from a spatially limited lung mask, which was cropped from the bottom by 10%-60%. Additionally, the number of gray-level values used in the joint entropy histogram was varied. The ability of mutual information to predict the clinical acceptability of a temporal subtraction image was evaluated through receiver operating characteristic (ROC) analysis. RESULTS: The mean correlation coefficient obtained between mutual information computed on constituent images and the subjective rating of temporal subtraction image quality was 0.785. ROC analysis yielded an average Az value of 0.852 for the ability of mutual information to distinguish between temporal subtraction images of clinically acceptable and clinically unacceptable quality. CONCLUSIONS: The results of this study establish a relationship between mutual information and temporal subtraction registration accuracy and demonstrate the ability of mutual information to objectively indicate the presence of misregistration artifacts.


Assuntos
Radiografia Torácica/normas , Técnica de Subtração , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Controle de Qualidade , Interpretação de Imagem Radiográfica Assistida por Computador , Fatores de Tempo , Adulto Jovem
15.
Radiology ; 246(1): 273-80, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18096539

RESUMO

PURPOSE: To retrospectively determine the sensitivity of and number of false-positive marks made by a commercially available computer-aided detection (CAD) system for identifying lung cancers previously missed on chest radiographs by radiologists, with histopathologic results as the reference standard. MATERIALS AND METHODS: Institutional review board approval was obtained for this HIPAA-compliant study; the requirement for informed patient consent was waived. A CAD nodule detection program was applied to 34 posteroanterior digital chest radiographs obtained in 34 patients (21 men, 13 women; mean age, 69 years). All 34 radiographs showed a nodular lung cancer that was apparent in retrospect but had not been mentioned in the report. Two radiologists identified these radiologist-missed cancers on the chest radiographs and graded them for visibility, location, subtlety (extremely subtle to extremely obvious on a 10-point scale), and actionability (actionable or not actionable according to whether the radiologists probably would have recommended follow-up if the nodule had been detected). The CAD results were analyzed to determine the numbers of cancers and false-positive nodules marked and to correlate the CAD results with the nodule grades for subtlety and actionability. The chi2 test or Fisher exact test for independence was used to compare CAD sensitivity between the very subtle (grade 1-3) and relatively obvious (grade > 3) cancers and between the actionable and not actionable cancers. RESULTS: The CAD program had an overall sensitivity of 35% (12 of 34 cancers), identifying seven (30%) of 23 very subtle and five (45%) of 11 relatively obvious radiologist-missed cancers (P = .21) and detecting two (25%) of eight missed not actionable and ten (38%) of 26 missed actionable cancers (P = .33). The CAD program made an average of 5.9 false-positive marks per radiograph. CONCLUSION: The described CAD system can mark a substantial proportion of visually subtle lung cancers that are likely to be missed by radiologists.


Assuntos
Diagnóstico por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Reações Falso-Positivas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiografia Torácica , Estudos Retrospectivos , Sensibilidade e Especificidade
16.
AJR Am J Roentgenol ; 190(4): 886-91, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18356433

RESUMO

OBJECTIVE: The objective of our study was to retrospectively evaluate whether the use of dual-energy subtraction chest radiographs can improve radiologists' performance for the detection of small previously missed lung cancers. MATERIALS AND METHODS: Dual-energy subtraction chest radiographs of 19 patients with previously missed nodular cancers, in which the radiology report did not mention a nodule that was visible in retrospect, were selected. Dual-energy subtraction radiographs of 19 patients with cancer and 16 patients without cancer were used for an observer study. Six radiologists indicated their confidence level regarding the presence of a lung cancer and, if they thought a cancer was present, also marked the most likely position for each lung, first using standard posteroanterior and lateral chest radiographs and then using both soft-tissue and bone dual-energy subtraction images along with standard radiographs. Receiver operating characteristic (ROC) curves were used to evaluate the observers' performance. The indicated locations of cancers and false-positives were also analyzed. RESULTS: The average area under the ROC curve (A(z)) value for the six radiologists was improved from 0.718 to 0.816, a statistically significant amount (p = 0.004), and the average sensitivity (correct localizations) for 19 previously missed cancers was also significantly improved from 40% to 59% (p = 0.008) with the aid of dual-energy subtraction images. The average number of false-positive (incorrect) localizations on 70 lungs was 10 without and nine with dual-energy subtraction images (p = 0.785). CONCLUSION: Dual-energy subtraction chest radiography has the potential to improve radiologists' performance for the detection of small missed lung cancers.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Radiografia Torácica/métodos , Idoso , Idoso de 80 Anos ou mais , Erros de Diagnóstico , Reações Falso-Positivas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Curva ROC , Sistema de Registros , Técnica de Subtração
17.
J Thorac Imaging ; 23(2): 77-85, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18520564

RESUMO

Digital radiography and display systems have revolutionized radiologic practice in recent years and have enabled clinical application of advanced image processing techniques. These include dual energy subtraction and temporal subtraction, both of which can improve diagnostic accuracy for abnormal findings in chest radiographs, especially for subtle lesions such as early lung cancer or focal pneumonia. Dual energy radiography exploits the differential attenuation of low-energy x-ray photons by calcium to produce separate images on the bones and soft tissues, which provides improved detection and characterization of both calcified and noncalcified lung lesions. Dual energy subtraction radiography is currently available from 2 of the major vendors and is in clinical use at many institutions in the United States. Temporal subtraction is a complementary technique that enhances interval change, by using a previous radiograph as a subtraction mask, so that unchanged normal anatomy is suppressed, whereas new abnormalities are enhanced. Though it is not yet a product in the United States, temporal subtraction is available for clinical use in Japan. Temporal subtraction can be combined with energy subtraction to reduce misregistration artifacts, and also has potential to improve computer-aided detection of nodules and other types of lung disease.


Assuntos
Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Radiografia Torácica/métodos , Doenças Torácicas/diagnóstico , Humanos , Processamento de Imagem Assistida por Computador/métodos , Técnica de Subtração , Fatores de Tempo
18.
Med Phys ; 34(12): 4678-89, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18196795

RESUMO

Accurate segmentation of pulmonary nodules in computed tomography (CT) is an important and difficult task for computer-aided diagnosis of lung cancer. Therefore, the authors developed a novel automated method for accurate segmentation of nodules in three-dimensional (3D) CT. First, a volume of interest (VOI) was determined at the location of a nodule. To simplify nodule segmentation, the 3D VOI was transformed into a two-dimensional (2D) image by use of a key "spiral-scanning" technique, in which a number of radial lines originating from the center of the VOI spirally scanned the VOI from the "north pole" to the "south pole." The voxels scanned by the radial lines provided a transformed 2D image. Because the surface of a nodule in the 3D image became a curve in the transformed 2D image, the spiral-scanning technique considerably simplified the segmentation method and enabled reliable segmentation results to be obtained. A dynamic programming technique was employed to delineate the "optimal" outline of a nodule in the 2D image, which corresponded to the surface of the nodule in the 3D image. The optimal outline was then transformed back into 3D image space to provide the surface of the nodule. An overlap between nodule regions provided by computer and by the radiologists was employed as a performance metric for evaluating the segmentation method. The database included two Lung Imaging Database Consortium (LIDC) data sets that contained 23 and 86 CT scans, respectively, with 23 and 73 nodules that were 3 mm or larger in diameter. For the two data sets, six and four radiologists manually delineated the outlines of the nodules as reference standards in a performance evaluation for nodule segmentation. The segmentation method was trained on the first and was tested on the second LIDC data sets. The mean overlap values were 66% and 64% for the nodules in the first and second LIDC data sets, respectively, which represented a higher performance level than those of two existing segmentation methods that were also evaluated by use of the LIDC data sets. The segmentation method provided relatively reliable results for pulmonary nodule segmentation and would be useful for lung cancer quantification, detection, and diagnosis.


Assuntos
Imageamento Tridimensional , Neoplasias Pulmonares/diagnóstico , Tomografia Computadorizada por Raios X , Humanos , Pulmão/citologia , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia
19.
Acad Radiol ; 14(12): 1455-63, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18035275

RESUMO

RATIONALE AND OBJECTIVES: Computer-aided diagnostic (CAD) systems fundamentally require the opinions of expert human observers to establish "truth" for algorithm development, training, and testing. The integrity of this "truth," however, must be established before investigators commit to this "gold standard" as the basis for their research. The purpose of this study was to develop a quality assurance (QA) model as an integral component of the "truth" collection process concerning the location and spatial extent of lung nodules observed on computed tomography (CT) scans to be included in the Lung Image Database Consortium (LIDC) public database. MATERIALS AND METHODS: One hundred CT scans were interpreted by four radiologists through a two-phase process. For the first of these reads (the "blinded read phase"), radiologists independently identified and annotated lesions, assigning each to one of three categories: "nodule >or=3 mm," "nodule <3 mm," or "non-nodule >or=3 mm." For the second read (the "unblinded read phase"), the same radiologists independently evaluated the same CT scans, but with all of the annotations from the previously performed blinded reads presented; each radiologist could add to, edit, or delete their own marks; change the lesion category of their own marks; or leave their marks unchanged. The post-unblinded read set of marks was grouped into discrete nodules and subjected to the QA process, which consisted of identification of potential errors introduced during the complete image annotation process and correction of those errors. Seven categories of potential error were defined; any nodule with a mark that satisfied the criterion for one of these categories was referred to the radiologist who assigned that mark for either correction or confirmation that the mark was intentional. RESULTS: A total of 105 QA issues were identified across 45 (45.0%) of the 100 CT scans. Radiologist review resulted in modifications to 101 (96.2%) of these potential errors. Twenty-one lesions erroneously marked as lung nodules after the unblinded reads had this designation removed through the QA process. CONCLUSIONS: The establishment of "truth" must incorporate a QA process to guarantee the integrity of the datasets that will provide the basis for the development, training, and testing of CAD systems.


Assuntos
Bases de Dados como Assunto/normas , Diagnóstico por Computador/normas , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/normas , Humanos , Bases de Conhecimento , Variações Dependentes do Observador , Garantia da Qualidade dos Cuidados de Saúde , Radiologia/normas , Sistemas de Informação em Radiologia/normas , Nódulo Pulmonar Solitário/diagnóstico por imagem
20.
Acad Radiol ; 14(11): 1409-21, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17964464

RESUMO

RATIONALE AND OBJECTIVES: The purpose of this study was to analyze the variability of experienced thoracic radiologists in the identification of lung nodules on computed tomography (CT) scans and thereby to investigate variability in the establishment of the "truth" against which nodule-based studies are measured. MATERIALS AND METHODS: Thirty CT scans were reviewed twice by four thoracic radiologists through a two-phase image annotation process. During the initial "blinded read" phase, radiologists independently marked lesions they identified as "nodule >or=3 mm (diameter)," "nodule <3 mm," or "non-nodule >or=3 mm." During the subsequent "unblinded read" phase, the blinded read results of all four radiologists were revealed to each radiologist, who then independently reviewed their marks along with the anonymous marks of their colleagues; a radiologist's own marks then could be deleted, added, or left unchanged. This approach was developed to identify, as completely as possible, all nodules in a scan without requiring forced consensus. RESULTS: After the initial blinded read phase, 71 lesions received "nodule >or=3 mm" marks from at least one radiologist; however, all four radiologists assigned such marks to only 24 (33.8%) of these lesions. After the unblinded reads, a total of 59 lesions were marked as "nodule >or=3 mm" by at least one radiologist. Twenty-seven (45.8%) of these lesions received such marks from all four radiologists, three (5.1%) were identified as such by three radiologists, 12 (20.3%) were identified by two radiologists, and 17 (28.8%) were identified by only a single radiologist. CONCLUSION: The two-phase image annotation process yields improved agreement among radiologists in the interpretation of nodules >or=3 mm. Nevertheless, substantial variability remains across radiologists in the task of lung nodule identification.


Assuntos
Algoritmos , Inteligência Artificial , Bases de Dados Factuais , Reconhecimento Automatizado de Padrão/métodos , Competência Profissional/estatística & dados numéricos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Variações Dependentes do Observador , Intensificação de Imagem Radiográfica/métodos , Radiologia/estatística & dados numéricos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa