Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Immunity ; 44(6): 1444-54, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27332733

RESUMO

Genetically modified T cells expressing chimeric antigen receptors (CARs) demonstrate robust responses against lineage restricted, non-essential targets in hematologic cancers. However, in solid tumors, the full potential of CAR T cell therapy is limited by the availability of cell surface antigens with sufficient cancer-specific expression. The majority of CAR targets have been normal self-antigens on dispensable hematopoietic tissues or overexpressed shared antigens. Here, we established that abnormal self-antigens can serve as targets for tumor rejection. We developed a CAR that recognized cancer-associated Tn glycoform of MUC1, a neoantigen expressed in a variety of cancers. Anti-Tn-MUC1 CAR T cells demonstrated target-specific cytotoxicity and successfully controlled tumor growth in xenograft models of T cell leukemia and pancreatic cancer. These findings demonstrate the therapeutic efficacy of CAR T cells directed against Tn-MUC1 and present aberrantly glycosylated antigens as a novel class of targets for tumor therapy with engineered T cells.


Assuntos
Adenocarcinoma/terapia , Epitopos de Linfócito T/imunologia , Imunoterapia/métodos , Mucina-1/imunologia , Linfócitos T/fisiologia , Adenocarcinoma/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Engenharia Genética , Glicosilação , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos , Mucina-1/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Ther ; 31(8): 2309-2325, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37312454

RESUMO

Multiple clinical studies have treated mesothelin (MSLN)-positive solid tumors by administering MSLN-directed chimeric antigen receptor (CAR) T cells. Although these products are generally safe, efficacy is limited. Therefore, we generated and characterized a potent, fully human anti-MSLN CAR. In a phase 1 dose-escalation study of patients with solid tumors, we observed two cases of severe pulmonary toxicity following intravenous infusion of this product in the high-dose cohort (1-3 × 108 T cells per m2). Both patients demonstrated progressive hypoxemia within 48 h of infusion with clinical and laboratory findings consistent with cytokine release syndrome. One patient ultimately progressed to grade 5 respiratory failure. An autopsy revealed acute lung injury, extensive T cell infiltration, and accumulation of CAR T cells in the lungs. RNA and protein detection techniques confirmed low levels of MSLN expression by benign pulmonary epithelial cells in affected lung and lung samples obtained from other inflammatory or fibrotic conditions, indicating that pulmonary pneumocyte and not pleural expression of mesothelin may lead to dose-limiting toxicity. We suggest patient enrollment criteria and dosing regimens of MSLN-directed therapies consider the possibility of dynamic expression of mesothelin in benign lung with a special concern for patients with underlying inflammatory or fibrotic conditions.


Assuntos
Mesotelina , Neoplasias , Humanos , Proteínas Ligadas por GPI/genética , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Linfócitos T
3.
Nature ; 545(7652): 98-102, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445461

RESUMO

The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown. Here we use a model of IFNγ induction and an IFNγ-GFP fusion protein in large, vascularized tumours growing in mice that express the IFNγ receptor exclusively in defined cell types. Responsiveness to IFNγ by myeloid cells and other haematopoietic cells, including T cells or fibroblasts, was not sufficient for IFNγ-induced tumour regression, whereas responsiveness of endothelial cells to IFNγ was necessary and sufficient. Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemorrhagic necrosis induced by tumour necrosis factor. The early events of IFNγ-induced tumour ischaemia resemble non-apoptotic blood vessel regression during development, wound healing or IFNγ-mediated, pregnancy-induced remodelling of uterine arteries. A better mechanistic understanding of how solid tumours are rejected may aid the design of more effective protocols for adoptive T-cell therapy.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Hipóxia Celular/imunologia , Interferon gama/imunologia , Isquemia/imunologia , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Remodelação Vascular , Animais , Vasos Sanguíneos/imunologia , Vasos Sanguíneos/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Feminino , Interferon gama/biossíntese , Microscopia Intravital , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Necrose , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Interferon/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo , Especificidade por Substrato , Cicatrização , Receptor de Interferon gama
4.
Proc Natl Acad Sci U S A ; 110(20): 8158-63, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23637340

RESUMO

A major challenge of cancer immunotherapy is the persistence and outgrowth of subpopulations that lose expression of the target antigen. IL-15 is a potent cytokine that can promote organ-specific autoimmunity when up-regulated on tissue cells. Here we report that T cells eradicated 2-wk-old solid tumors that expressed IL-15, eliminating antigen-negative cells. In contrast, control tumors that lacked IL-15 expression consistently relapsed. Interestingly, even tumors lacking expression of cognate antigen were rejected when expressing IL-15, indicating that rejection after adoptive T-cell transfer was independent of cognate antigen expression. Nevertheless, the T-cell receptor of the transferred T cells influenced the outcome, consistent with the notion that T-cell receptor activation and effector status determine whether IL-15 can confer lymphokine killer activity-like properties to T cells. The effect was limited to the microenvironment of tumors expressing IL-15; there were no noticeable effects on contralateral tumors lacking IL-15. Taken together, these results indicate that expression of IL-15 in the tumor microenvironment may prevent the escape of antigen loss variants and subsequent tumor recurrence by enabling T cells to eliminate cancer cells lacking cognate antigen expression in a locally restricted manner.


Assuntos
Regulação Neoplásica da Expressão Gênica , Interleucina-15/metabolismo , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Microambiente Tumoral , Animais , Antígenos de Neoplasias/metabolismo , Autoimunidade , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Humanos , Interleucina-15/genética , Células Matadoras Naturais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perforina/metabolismo , Baço/citologia , Células Estromais/citologia
5.
Semin Cancer Biol ; 22(1): 41-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22212863

RESUMO

All cancers depend on stroma for support of growth. Leukemias, solid tumors, cancer cells causing effusions, metastases as well as micro-disseminated cancer cells release factors that stimulate stromal cells, which in turn produce ligands that stimulate cancer cells. Therefore, elimination of stromal support by destroying the stromal cells or by inhibiting feedback stimulation of cancer growth is in the focus of many evolving therapies. A stringent evaluation of the efficacy of stromal targeting requires testing in animal models. Most current studies emphasize the successes of stromal targeting rather than deciphering its limitations. Here we show that many of the stromal targeting approaches, while often reducing tumor growth rates, are rarely curative. Therefore, we will also discuss conditions where stromal targeting can eradicate large established tumors. Finally, we will examine still unanswered questions of this promising and exciting area of cancer research.


Assuntos
Neoplasias/terapia , Comunicação Parácrina/fisiologia , Células Estromais/fisiologia , Progressão da Doença , Humanos , Neoplasias/fisiopatologia
6.
Clin Cancer Res ; 30(8): 1642-1654, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190111

RESUMO

PURPOSE: To achieve eradication of solid tumors, we examined how many neoantigens need to be targeted with how many T-cell receptors (TCR) by which type of T cells. EXPERIMENTAL DESIGN: Unmanipulated, naturally expressed (autochthonous) neoantigens were targeted with adoptively transferred TCR-engineered autologous T cells (TCR-therapy). TCR-therapy used CD8+ T-cell subsets engineered with TCRs isolated from CD8+ T cells (CD8+TCR-therapy), CD4+ T-cell subsets engineered with TCRs isolated from CD4+ T cells (CD4+TCR-therapy), or combinations of both. The targeted tumors were established for at least 3 weeks and derived from primary autochthonous cancer cell cultures, resembling natural solid tumors and their heterogeneity as found in humans. RESULTS: Relapse was common with CD8+TCR-therapy even when targeting multiple different autochthonous neoantigens on heterogeneous solid tumors. CD8+TCR-therapy was only effective against homogenous tumors artificially derived from a cancer cell clone. In contrast, a combination of CD8+TCR-therapy with CD4+TCR-therapy, each targeting one neoantigen, eradicated large and established solid tumors of natural heterogeneity. CD4+TCR-therapy targeted a mutant neoantigen on tumor stroma while direct cancer cell recognition by CD8+TCR-therapy was essential for cure. In vitro data were consistent with elimination of cancer cells requiring a four-cell cluster composed of TCR-engineered CD4+ and CD8+ T cells together with antigen-presenting cells and cancer cells. CONCLUSIONS: Two cancer-specific TCRs can be essential and sufficient to eradicate heterogeneous solid tumors expressing unmanipulated, autochthonous targets. We demonstrate that simplifications to adoptive TCR-therapy are possible without compromising efficacy.


Assuntos
Antígenos de Neoplasias , Neoplasias , Humanos , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia Adotiva/métodos
7.
Mol Ther Oncol ; 32(2): 200797, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38601972

RESUMO

Acute myeloid leukemia (AML), a fast-progressing hematological malignancy affecting myeloid cells, is typically treated with chemotherapy or hematopoietic stem cell transplantation. However, approximately half of the patients face relapses and 5-year survival rates are poor. With the goal to facilitate dual-specificity, boosting anti-tumor activity, and minimizing the risk for antigen escape, this study focused on combining chimeric antigen receptor (CAR) and T cell receptor (TCR) technologies. CAR'TCR-T cells, co-expressing a CD33-CAR and a transgenic dNPM1-TCR, revealed increased and prolonged anti-tumor activity in vitro, particularly in case of low target antigen expression. The distinct transcriptomic profile suggested enhanced formation of immunological synapses, activation, and signaling. Complete elimination of AML xenografts in vivo was only achieved with a cell product containing CAR'TCR-T, CAR-T, and TCR-T cells, representing the outcome of co-transduction with two lentiviral vectors encoding either CAR or TCR. A mixture of CAR-T and TCR-T cells, without CAR'TCR-T cells, did not prevent progressive tumor outgrowth and was comparable to treatment with CAR-T and TCR-T cells individually. Overall, our data underscore the efficacy of co-expressing CAR and transgenic TCR in one T cell, and might open a novel therapeutic avenue not only for AML but also other malignancies.

8.
Cancer Immunol Immunother ; 62(2): 359-69, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22926060

RESUMO

Clinical studies with immunotherapies for cancer, including adoptive cell transfers of T cells, have shown promising results. It is now widely believed that recruitment of CD4(+) helper T cells to the tumor would be favorable, as CD4(+) cells play a pivotal role in cytokine secretion as well as promoting the survival, proliferation, and effector functions of tumor-specific CD8(+) cytotoxic T lymphocytes. Genetically engineered high-affinity T-cell receptors (TCRs) can be introduced into CD4(+) helper T cells to redirect them to recognize MHC-class I-restricted antigens, but it is not clear what affinity of the TCR will be optimal in this approach. Here, we show that CD4(+) T cells expressing a high-affinity TCR (nanomolar K (d) value) against a class I tumor antigen mediated more effective tumor treatment than the wild-type affinity TCR (micromolar K (d) value). High-affinity TCRs in CD4(+) cells resulted in enhanced survival and long-term persistence of effector memory T cells in a melanoma tumor model. The results suggest that TCRs with nanomolar affinity could be advantageous for tumor targeting when expressed in CD4(+) T cells.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Genes MHC Classe I/imunologia , Melanoma Experimental/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Neoplasias Cutâneas/imunologia , Transferência Adotiva , Animais , Antineoplásicos/uso terapêutico , Linfócitos T CD4-Positivos/química , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Interferon gama/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/biossíntese , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética
9.
Mol Ther ; 20(3): 652-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22233579

RESUMO

Most T cells have T cell receptors (TCR) of micromolar affinity for peptide-major histocompatibility complex (MHC) ligands, but genetic engineering can generate TCRs of nanomolar affinity. The affinity of the TCR used, m33, for its cognate non-self peptide-MHC-I complex (SIYRYYGL-K(b)) is 1,000-fold higher than of the wild-type TCR 2C. The affinity of m33 for the self-peptide dEV-8 on K(b) is only twofold higher. Mouse CD8(+) T cells transduced with an m33-encoding retrovirus showed binding of SIY-K(b) and potent function in vitro, but in vivo these T cells disappeared within hours after transfer into syngeneic hosts without causing graft-versus-host disease (GVHD). Accordingly, in cases where such CD8-dependent self-reactivity might occur in human adoptive T cell therapies, our results show that a peripheral T-cell deletion mechanism could operate to avoid reactions with the host. In contrast to CD8(+) T cells, we show that CD4(+) T cells expressing m33 survived for months in vivo. Furthermore, the m33-transduced CD4(+) T cells were able to mediate antigen-specific rejection of 6-day-old tumors. Together, we show that CD8(+) T cell expressing a MHC class I-restricted high-affinity TCR were rapidly deleted whereas CD4(+) T cells expressing the same TCR survived and provided function while being directed against a class I-restricted antigen.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Sobrevivência Celular/imunologia , Expressão Gênica , Vetores Genéticos/genética , Imunoterapia Adotiva , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Oligopeptídeos/imunologia , Peptídeos/química , Peptídeos/imunologia , Retroviridae/genética , Transdução Genética
10.
Cancer Discov ; 13(9): 1982-1997, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37249512

RESUMO

CAR T-cell product quality and stemness (Tstem) are major determinants of in vivo expansion, efficacy, and clinical response. Prolonged ex vivo culturing is known to deplete Tstem, affecting clinical outcome. YTB323, a novel autologous CD19-directed CAR T-cell therapy expressing the same validated CAR as tisagenlecleucel, is manufactured using a next-generation platform in <2 days. Here, we report the preclinical development and preliminary clinical data of YTB323 in adults with relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL; NCT03960840). In preclinical mouse models, YTB323 exhibited enhanced in vivo expansion and antitumor activity at lower doses than traditionally manufactured CAR T cells. Clinically, at doses 25-fold lower than tisagenlecleucel, YTB323 showed (i) promising overall safety [cytokine release syndrome (any grade, 35%; grade ≥3, 6%), neurotoxicity (any grade, 25%; grade ≥3, 6%)]; (ii) overall response rates of 75% and 80% for DL1 and DL2, respectively; (iii) comparable CAR T-cell expansion; and (iv) preservation of T-cell phenotype. Current data support the continued development of YTB323 for r/r DLBCL. SIGNIFICANCE: Traditional CAR T-cell manufacturing requires extended ex vivo cell culture, reducing naive and stem cell memory T-cell populations and diminishing antitumor activity. YTB323, which expresses the same validated CAR as tisagenlecleucel, can be manufactured in <2 days while retaining T-cell stemness and enhancing clinical activity at a 25-fold lower dose. See related commentary by Wang, p. 1961. This article is featured in Selected Articles from This Issue, p. 1949.


Assuntos
Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Receptores de Antígenos Quiméricos , Camundongos , Animais , Imunoterapia Adotiva , Técnicas de Cultura de Células , Antígenos CD19
11.
Nat Med ; 27(5): 842-850, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33888899

RESUMO

While CD19-directed chimeric antigen receptor (CAR) T cells can induce remission in patients with B cell acute lymphoblastic leukemia (ALL), a large subset relapse with CD19- disease. Like CD19, CD22 is broadly expressed by B-lineage cells and thus serves as an alternative immunotherapy target in ALL. Here we present the composite outcomes of two pilot clinical trials ( NCT02588456 and NCT02650414 ) of T cells bearing a 4-1BB-based, CD22-targeting CAR in patients with relapsed or refractory ALL. The primary end point of these studies was to assess safety, and the secondary end point was antileukemic efficacy. We observed unexpectedly low response rates, prompting us to perform detailed interrogation of the responsible CAR biology. We found that shortening of the amino acid linker connecting the variable heavy and light chains of the CAR antigen-binding domain drove receptor homodimerization and antigen-independent signaling. In contrast to CD28-based CARs, autonomously signaling 4-1BB-based CARs demonstrated enhanced immune synapse formation, activation of pro-inflammatory genes and superior effector function. We validated this association between autonomous signaling and enhanced function in several CAR constructs and, on the basis of these observations, designed a new short-linker CD22 single-chain variable fragment for clinical evaluation. Our findings both suggest that tonic 4-1BB-based signaling is beneficial to CAR function and demonstrate the utility of bedside-to-bench-to-bedside translation in the design and implementation of CAR T cell therapies.


Assuntos
Ligante 4-1BB/metabolismo , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Linfócitos T/transplante , Adulto , Animais , Antígenos CD19/metabolismo , Linfócitos B/imunologia , Antígenos CD28/genética , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Stem Cells ; 26(11): 2945-54, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18757298

RESUMO

Glioblastomas, the most aggressive primary brain tumors, occur almost exclusively in adult patients. Neural precursor cells (NPCs) are antitumorigenic in mice, as they can migrate to glioblastomas and induce tumor cell death. Here, we show that the antitumor effect of NPCs is age-dependently controlled by cell proliferation in the subventricular zone (SVZ) and that NPCs accumulating at a glioblastoma are diverted from their normal migratory path to the olfactory bulb. Experimentally induced cortical glioblastomas resulted in decreased subventricular proliferation in adult (postnatal day 90) but not in young (postnatal day 30) mice. Adult mice supplied fewer NPCs to glioblastomas and had larger tumors than young mice. Apart from the difference in proliferation, there was neither a change in cell number and death rate in the SVZ nor a change in angiogenesis and immune cell density in the tumors. The ability to kill glioblastomas was similar in NPCs isolated from young and adult mice. The proliferative response of NPCs to glioblastomas depended on the expression of D-type cyclins. In young mice, NPCs express the cyclins D1 and D2, but the expression of cyclin D1 is lost during aging, and in adult NPCs only cyclin D2 remains. In young and adult cyclin D2-deficient mice we observed a reduced supply of NPCs to glioblastomas and the generation of larger tumors compared with wild-type mice. We conclude that cyclin D1 and D2 are nonredundant for the antitumor response of subventricular NPCs. Loss of a single D-type cyclin results in a smaller pool of proliferating NPCs, lower number of NPCs migrating to the tumor, and reduced antitumor activity. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Neurônios/transplante , Células-Tronco/citologia , Fatores Etários , Animais , Neoplasias Encefálicas/patologia , Proliferação de Células , Células Cultivadas , Ciclina D1/metabolismo , Ciclina D2 , Ciclinas/metabolismo , Glioblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco
13.
J Mol Med (Berl) ; 86(5): 573-83, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18335188

RESUMO

The transfer of T cell receptor (TCR) genes allows to endow T cells with a new antigen specificity. For clinical applications of TCR-redirected T cells, efficient functional expression of the transgenic TCR is a key prerequisite. Here, we compared the influence of the transgene cassette on the expression and function of the murine TCR P14 (recognizing a LCMV gp33 epitope) and the human TCR WT-1 (recognizing an epitope of the tumor-associated antigen WT-1). We constructed different vectors, in which TCRalpha- and beta-chain genes were either (a) linked by an internal ribosomal entry site (IRES), (b) combined by a 2A peptide, or (c) introduced into two individual retroviral constructs. While in a TCR-deficient T cell line TCR P14 was expressed equally well by all constructs, we found that IRES- but not 2A-employing TCR expression is hampered in a TCR-bearing cell line and in primary murine T cells where the transgenic TCR has to compete with endogenous TCR chains. Similarly, 2A-linked TCR WT-1 genes yielded highest expression and function as measured by tetramer binding and peptide-specific IFN-gamma secretion. Differences in expression were independent of copy number integration as shown by real-time PCR. Thus, linking TCRalpha- and beta-chain genes by a 2A peptide is superior to an IRES for TCR expression and T cell function.


Assuntos
Mutagênese Insercional , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Transgenes/genética , Animais , Linhagem Celular , Membrana Celular/metabolismo , Dosagem de Genes , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retroviridae
14.
JCI Insight ; 3(7)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618658

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is characterized by its highly immunosuppressive tumor microenvironment (TME) that limits T cell infiltration and induces T cell hypofunction. Mesothelin-redirected chimeric antigen receptor T cell (meso-CAR T cell) therapy has shown some efficacy in clinical trials but antitumor efficacy remains modest. We hypothesized that combined meso-CAR T cells with an oncolytic adenovirus expressing TNF-α and IL-2 (Ad5/3-E2F-D24-TNFa-IRES-IL2, or OAd-TNFa-IL2) would improve efficacy. OAd-TNFa-IL2 enhanced the antitumor efficacy of meso-CAR T cells in human-PDA-xenograft immunodeficient mice and efficacy was associated with robustly increased tumor-infiltrating lymphocytes (TILs), enhanced and prolonged T cell function. Mice treated with parental OAd combined with meso-CAR T developed tumor metastasis to the lungs even if primary tumors were controlled. However, no mice treated with combined OAd-TNFa-IL2 and meso-CAR T died of tumor metastasis. We also evaluated this approach in a syngeneic mouse tumor model by combining adenovirus expressing murine TNF-α and IL-2 (Ad-mTNFa-mIL2) and mouse CAR T cells. This approach induced significant tumor regression in mice engrafted with highly aggressive and immunosuppressive PDA tumors. Ad-mTNFa-mIL2 increased both CAR T cell and host T cell infiltration to the tumor and altered host tumor immune status with M1 polarization of macrophages and increased dendritic cell maturation. These findings indicate that combining cytokine-armed oncolytic adenovirus to enhance the efficacy of CAR T cell therapy is a promising approach to overcome the immunosuppressive TME for the treatment of PDA.


Assuntos
Carcinoma Ductal Pancreático/terapia , Proteínas Ligadas por GPI/imunologia , Imunoterapia Adotiva/métodos , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Adenoviridae/imunologia , Animais , Carcinoma Ductal Pancreático/imunologia , Linhagem Celular Tumoral , Terapia Combinada/métodos , Humanos , Linfócitos do Interstício Tumoral/imunologia , Mesotelina , Camundongos , Vírus Oncolíticos/imunologia , Neoplasias Pancreáticas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Aspects Med ; 28(1): 115-42, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17307249

RESUMO

The therapeutic efficacy of adoptively transferred cytotoxic T lymphocytes (CTL) has been demonstrated in clinical trials for the treatment of chronic myelogenous leukemia, cytomegalovirus-mediated disease, and Epstein-Barr virus-positive B cell lymphomas. It is however limited by the difficulty of generating sufficient amounts of CTLs in vitro, especially for the treatment of solid tumors. Recent gene therapy approaches, including two clinical trials, successfully apply genetic engineering of T cell specificity by T cell receptor (TCR) gene transfer. In this review we want to elucidate several principles of the redirection of T cell specificity. We cover basic aspects of retroviral gene transfer, regarding transduction efficacy and transgene expression levels. It was demonstrated that the number of TCR molecules on a T cell is important for its function. Therefore, an efficient transfer system that yields high transduction efficiency and strong and stable transgene expression is a prerequisite to achieve effector function by redirected T cells. Furthermore, we consider more recent aspects of T cell specificity engineering. These include the possibility of co-transferring coreceptors to create for example functional T helper cells by engrafting CD4(+) T cells with a MHC class I restricted TCR and the CD8 coreceptor and vice versa. Also, risks related to the adoptive transfer of TCR gene-modified T cells and possible safety mechanisms are discussed. Finally, we summarize recent findings describing transferred TCRs capable of displacing endogenous TCRs from the cell surface.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/tendências , Imunoterapia/tendências , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/uso terapêutico , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Terapia Genética/métodos , Humanos , Receptores de Antígenos de Linfócitos T/administração & dosagem
16.
Cancer Res ; 65(7): 2560-4, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15805249

RESUMO

The origin and pathogenesis of histiocytic malignancies and the biology of the tumor cells are poorly understood. We have isolated a murine histiocytic tumor cell line (CY15) from a BALB/c IFNgamma(-/-) mouse and characterized it in terms of phenotype and function. The morphology, as judged by electron microscopy, and the surface marker phenotype suggests that CY15 cells are similar to immature dendritic cells (CD11c (low), MHC II (low), CD11b(+), B7.1(+), B7.2(+), and CD40(+)). The cells form tumors in BALB/c mice and metastasize to spleen, liver, lung, kidney, and to a lesser extend to lymph nodes and bone marrow, as judged by the growth of green fluorescent protein transfected tumor cells in mice. CY15 cells are capable of actively taking up antigen (FITC-ovalbumin) and can stimulate T lymphocytes in an allogenic mixed lymphocyte reaction but less effectively than their normal counterparts (immature dendritic cells). They respond to interleukin 4 (IL-4) with up-regulation of CD11c. If stimulated with IFNgamma the cells up-regulate MHC II, CD40 B7.1, and B7.2. Lipopolysaccharide induces the cells to up-regulate B7.1 and B7.2 and to secrete tumor necrosis factor alpha and IL-12. Based on these data, CY15 is a dendritic cell-like tumor cell line and may serve as a transplantable tumor model for histiocytosis in humans.


Assuntos
Células Dendríticas/patologia , Histiócitos/patologia , Transtornos Histiocíticos Malignos/patologia , Animais , Processos de Crescimento Celular , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/ultraestrutura , Citometria de Fluxo , Histiócitos/imunologia , Histiócitos/ultraestrutura , Transtornos Histiocíticos Malignos/imunologia , Interferon gama/deficiência , Interferon gama/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Metástase Neoplásica , Transplante de Neoplasias , Linfócitos T/imunologia , Linfócitos T/patologia
17.
Clin Cancer Res ; 22(11): 2734-43, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26667491

RESUMO

PURPOSE: Cancers usually contain multiple unique tumor-specific antigens produced by single amino acid substitutions (AAS) and encoded by somatic nonsynonymous single nucleotide substitutions. We determined whether adoptively transferred T cells can reject large, well-established solid tumors when engineered to express a single type of T-cell receptor (TCR) that is specific for a single AAS. EXPERIMENTAL DESIGN: By exome and RNA sequencing of an UV-induced tumor, we identified an AAS in p68 (mp68), a co-activator of p53. This AAS seemed to be an ideal tumor-specific neoepitope because it is encoded by a trunk mutation in the primary autochthonous cancer and binds with highest affinity to the MHC. A high-avidity mp68-specific TCR was used to genetically engineer T cells as well as to generate TCR-transgenic mice for adoptive therapy. RESULTS: When the neoepitope was expressed at high levels and by all cancer cells, their direct recognition sufficed to destroy intratumor vessels and eradicate large, long-established solid tumors. When the neoepitope was targeted as autochthonous antigen, T cells caused cancer regression followed by escape of antigen-negative variants. Escape could be thwarted by expressing the antigen at increased levels in all cancer cells or by combining T-cell therapy with local irradiation. Therapeutic efficacies of TCR-transduced and TCR-transgenic T cells were similar. CONCLUSIONS: Gene therapy with a single TCR targeting a single AAS can eradicate large established cancer, but a uniform expression and/or sufficient levels of the targeted neoepitope or additional therapy are required to overcome tumor escape. Clin Cancer Res; 22(11); 2734-43. ©2015 AACRSee related commentary by Liu, p. 2602.


Assuntos
Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , eIF-2 Quinase/genética , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Efeito Espectador , Linhagem Celular Tumoral , Apresentação Cruzada , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Terapia Genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Mutação Puntual , Evasão Tumoral , eIF-2 Quinase/imunologia , eIF-2 Quinase/metabolismo
18.
Hum Gene Ther ; 16(7): 799-810, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16000062

RESUMO

Adoptive T cell therapy of renal cell carcinoma (RCC) is limited by the difficulty in generating sufficient numbers of RCC-reactive T cells in vitro. To circumvent this problem, we cloned T cell receptor (TCR) alpha and beta chains from a tumor-infiltrating lymphocyte clone specific for an RCC tumor antigen and transferred the TCR into human T cell lines and primary T lymphocytes. Efficient TCR expression in primary T lymphocytes was obtained only with a mouse myeloproliferative sarcoma virus (MPSV)-based retroviral vector, not with a Moloney murine leukemia virus (MLV)-based vector, although both viral supernatants were similar in titer, as shown by analysis of copy number integration in transduced T cells. Reverse transcription-polymerase chain reaction analysis revealed a higher amount of TCR-encoding transcripts when T cells were transduced with the MPSV vector in comparison with the MLV vector, indicating that high TCR expression levels can be achieved by appropriate cis-regulatory vector elements. The biological activity of the transferred TCR was shown by specific lysis of RCC cells ((51)Cr release assay) and by interferon gamma and tumor necrosis factor alpha release (enzyme-linked immunosorbent assay) in an antigen-specific and HLA-A*0201-restricted fashion. Comparison of the redirected T lymphocytes with the original tumor-infiltrating lymphocyte clone revealed similar killing and cytokine secretion capabilities. The functional activity of TCR-redirected T lymphocytes was stable over time. The results demonstrate that use of an optimized retroviral vector yielded a high TCR transduction efficiency and stable and high TCR expression in primary human T lymphocytes and redirected their specificity toward RCC cells.


Assuntos
Carcinoma de Células Renais/imunologia , Genes Codificadores dos Receptores de Linfócitos T , Neoplasias Renais/imunologia , Retroviridae/genética , Linfócitos T Citotóxicos/imunologia , Linhagem Celular , Células Cultivadas , Expressão Gênica , Vetores Genéticos , Humanos , Interferon gama/metabolismo , Vírus da Leucemia Murina de Moloney/genética , Recombinação Genética , Vírus do Sarcoma Murino/genética , Transdução Genética , Fator de Necrose Tumoral alfa/metabolismo
19.
Sci Transl Med ; 7(275): 275ra22, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25696001

RESUMO

Chimeric antigen receptors (CARs) are synthetic molecules designed to redirect T cells to specific antigens. CAR-modified T cells can mediate long-term durable remissions in B cell malignancies, but expanding this platform to solid tumors requires the discovery of surface targets with limited expression in normal tissues. The variant III mutation of the epidermal growth factor receptor (EGFRvIII) results from an in-frame deletion of a portion of the extracellular domain, creating a neoepitope. We chose a vector backbone encoding a second-generation CAR based on efficacy of a murine scFv-based CAR in a xenograft model of glioblastoma. Next, we generated a panel of humanized scFvs and tested their specificity and function as soluble proteins and in the form of CAR-transduced T cells; a low-affinity scFv was selected on the basis of its specificity for EGFRvIII over wild-type EGFR. The lead candidate scFv was tested in vitro for its ability to direct CAR-transduced T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. We further evaluated the specificity of the lead CAR candidate in vitro against EGFR-expressing keratinocytes and in vivo in a model of mice grafted with normal human skin. EGFRvIII-directed CAR T cells were also able to control tumor growth in xenogeneic subcutaneous and orthotopic models of human EGFRvIII(+) glioblastoma. On the basis of these results, we have designed a phase 1 clinical study of CAR T cells transduced with humanized scFv directed to EGFRvIII in patients with either residual or recurrent glioblastoma (NCT02209376).


Assuntos
Neoplasias Encefálicas/terapia , Receptores ErbB/imunologia , Glioblastoma/terapia , Imunoterapia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos
20.
Hum Gene Ther ; 14(12): 1155-68, 2003 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-12908967

RESUMO

Efficient expression of genes transferred by retroviral vectors is a prerequisite for gene therapy, especially when the biological effect depends on the amount of transgene product. High-level gene expression is desirable for several gene therapy approaches involving T lymphocytes. We evaluated standard retroviral vectors with cis-regulatory control elements of the Moloney murine leukemia virus (Mo-MLV) with or without the human T cell-specific CD2 enhancer. For comparison, vectors containing the long terminal repeat (LTR) of myeloproliferative sarcoma virus (MPSV) and an improved 5' untranslated region were used (MP71 vectors), with or without the woodchuck hepatitis virus posttranscriptional regulatory element (PRE). All vectors expressed the enhanced green fluorescent protein (GFP) to measure transgene expression. In mouse T cells MP71 vectors with and without the PRE yielded an up to 10-fold higher expression level compared with the Mo-MLV-based vectors currently used for gene transfer into T lymphocytes. A high multiplicity of infection (MOI) of standard Mo-MLV vectors could not reach expression levels obtained with a low MOI of MP71 vector. Ex vivo-transduced mouse T lymphocytes maintained the vector-dependent differences in level of transgene expression in Rag-1-deficient mice when adoptively transferred. In four human T cell lines and human primary T lymphocytes MP71 vectors yielded an up to 75-fold higher GFP expression level in comparison with the standard Mo-MLV vector. In contrast to mouse T cells, the integration of the PRE into MP71 vectors induced in human T cells a further significant increase in transgene expression level. Southern blot analysis of CEM T cells revealed that the superior performance of MP71 vectors was not due to a higher rate of viral integration. In summary, MP71 vectors are useful tools for stable, high-level gene expression in T lymphocytes, for example, in the expression of T cell receptor genes.


Assuntos
Vetores Genéticos , Retroviridae/genética , Linfócitos T/imunologia , Transgenes , Células 3T3 , Animais , Antígenos CD2/genética , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Expressão Gênica , Terapia Genética , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/genética , Camundongos , Vírus da Leucemia Murina de Moloney/genética , Sequências Reguladoras de Ácido Nucleico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa