Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mol Cell ; 77(3): 571-585.e4, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31901448

RESUMO

Сhromatin is critical for genome compaction and gene expression. On a coarse scale, the genome is divided into euchromatin, which harbors the majority of genes and is enriched in active chromatin marks, and heterochromatin, which is gene-poor but repeat-rich. The conserved molecular hallmark of heterochromatin is the H3K9me3 modification, which is associated with gene silencing. We found that in Drosophila, deposition of most of the H3K9me3 mark depends on SUMO and the SUMO ligase Su(var)2-10, which recruits the histone methyltransferase complex SetDB1/Wde. In addition to repressing repeats, H3K9me3 influences expression of both hetero- and euchromatic host genes. High H3K9me3 levels in heterochromatin are required to suppress spurious transcription and ensure proper gene expression. In euchromatin, a set of conserved genes is repressed by Su(var)2-10/SetDB1-induced H3K9 trimethylation, ensuring tissue-specific gene expression. Several components of heterochromatin are themselves repressed by this pathway, providing a negative feedback mechanism to ensure chromatin homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Eucromatina/metabolismo , Retroalimentação Fisiológica , Expressão Gênica/genética , Inativação Gênica/fisiologia , Heterocromatina/genética , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Ligases/genética , Metiltransferases/genética , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Repressoras/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
2.
PLoS Genet ; 20(1): e1011117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198522

RESUMO

During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.


Assuntos
Miopatias da Nemalina , Sarcômeros , Animais , Humanos , Sarcômeros/metabolismo , Forminas/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo
3.
PLoS Biol ; 21(2): e3002001, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745683

RESUMO

Accumulating evidence indicates that there are substantial species differences in the properties of mammalian neurons, yet theories on circuit activity and information processing in the human brain are based heavily on results obtained from rodents and other experimental animals. This knowledge gap may be particularly important for understanding the neocortex, the brain area responsible for the most complex neuronal operations and showing the greatest evolutionary divergence. Here, we examined differences in the electrophysiological properties of human and mouse fast-spiking GABAergic basket cells, among the most abundant inhibitory interneurons in cortex. Analyses of membrane potential responses to current input, pharmacologically isolated somatic leak currents, isolated soma outside-out patch recordings, and immunohistochemical staining revealed that human neocortical basket cells abundantly express hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel isoforms HCN1 and HCN2 at the cell soma membrane, whereas these channels are sparse at the rodent basket cell soma membrane. Antagonist experiments showed that HCN channels in human neurons contribute to the resting membrane potential and cell excitability at the cell soma, accelerate somatic membrane potential kinetics, and shorten the lag between excitatory postsynaptic potentials and action potential generation. These effects are important because the soma of human fast-spiking neurons without HCN channels exhibit low persistent ion leak and slow membrane potential kinetics, compared with mouse fast-spiking neurons. HCN channels speed up human cell membrane potential kinetics and help attain an input-output rate close to that of rodent cells. Computational modeling demonstrated that HCN channel activity at the human fast-spiking cell soma membrane is sufficient to accelerate the input-output function as observed in cell recordings. Thus, human and mouse fast-spiking neurons exhibit functionally significant differences in ion channel composition at the cell soma membrane to set the speed and fidelity of their input-output function. These HCN channels ensure fast electrical reactivity of fast-spiking cells in human neocortex.


Assuntos
Neocórtex , Humanos , Camundongos , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Neurônios/fisiologia , Interneurônios/fisiologia , Mamíferos
4.
J Cell Sci ; 136(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272588

RESUMO

Myofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibrils. Muscle contraction is achieved by the simultaneous shortening of sarcomeres, which requires all sarcomeres to be the same size. Muscles have a variety of ways to ensure sarcomere homogeneity. We have previously shown that the controlled oligomerization of Zasp proteins sets the diameter of the myofibril. Here, we looked for Zasp-binding proteins at the Z-disc to identify additional proteins coordinating myofibril growth and assembly. We found that the E1 subunit of the oxoglutarate dehydrogenase complex localizes to both the Z-disc and the mitochondria, and is recruited to the Z-disc by Zasp52. The three subunits of the oxoglutarate dehydrogenase complex are required for myofibril formation. Using super-resolution microscopy, we revealed the overall organization of the complex at the Z-disc. Metabolomics identified an amino acid imbalance affecting protein synthesis as a possible cause of myofibril defects, which is supported by OGDH-dependent localization of ribosomes at the Z-disc.


Assuntos
Miofibrilas , Sarcômeros , Animais , Miofibrilas/metabolismo , Sarcômeros/metabolismo , Drosophila/metabolismo , Actinas/metabolismo , Miosinas/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo
5.
RNA ; 29(10): 1557-1574, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460154

RESUMO

Assemblysomes are EDTA- and RNase-resistant ribonucleoprotein (RNP) complexes of paused ribosomes with protruding nascent polypeptide chains. They have been described in yeast and human cells for the proteasome subunit Rpt1, and the disordered amino-terminal part of the nascent chain was found to be indispensable for the accumulation of the Rpt1-RNP into assemblysomes. Motivated by this, to find other assemblysome-associated RNPs we used bioinformatics to rank subunits of Saccharomyces cerevisiae protein complexes according to their amino-terminal disorder propensity. The results revealed that gene products involved in DNA repair are enriched among the top candidates. The Sgs1 DNA helicase was chosen for experimental validation. We found that indeed nascent chains of Sgs1 form EDTA-resistant RNP condensates, assemblysomes by definition. Moreover, upon exposure to UV, SGS1 mRNA shifted from assemblysomes to polysomes, suggesting that external stimuli are regulators of assemblysome dynamics. We extended our studies to human cell lines. The BLM helicase, ortholog of yeast Sgs1, was identified upon sequencing assemblysome-associated RNAs from the MCF7 human breast cancer cell line, and mRNAs encoding DNA repair proteins were overall enriched. Using the radiation-resistant A549 cell line, we observed by transmission electron microscopy that 1,6-hexanediol, an agent known to disrupt phase-separated condensates, depletes ring ribosome structures compatible with assemblysomes from the cytoplasm of cells and makes the cells more sensitive to X-ray treatment. Taken together, these findings suggest that assemblysomes may be a component of the DNA damage response from yeast to human.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RecQ Helicases/genética , Ácido Edético/metabolismo , Dano ao DNA , RNA/metabolismo , Ribonucleoproteínas/genética , Ribossomos/genética , Ribossomos/metabolismo
6.
Cell Mol Life Sci ; 79(2): 122, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35128576

RESUMO

Skeletal muscle demonstrates a high degree of regenerative capacity repeating the embryonic myogenic program under strict control. Rhabdomyosarcoma is the most common sarcoma in childhood and is characterized by impaired muscle differentiation. In this study, we observed that silencing the expression of syndecan-4, the ubiquitously expressed transmembrane heparan sulfate proteoglycan, significantly enhanced myoblast differentiation, and fusion. During muscle differentiation, the gradually decreasing expression of syndecan-4 allows the activation of Rac1, thereby mediating myoblast fusion. Single-molecule localized superresolution direct stochastic optical reconstruction microscopy (dSTORM) imaging revealed nanoscale changes in actin cytoskeletal architecture, and atomic force microscopy showed reduced elasticity of syndecan-4-knockdown cells during fusion. Syndecan-4 copy-number amplification was observed in 28% of human fusion-negative rhabdomyosarcoma tumors and was accompanied by increased syndecan-4 expression based on RNA sequencing data. Our study suggests that syndecan-4 can serve as a tumor driver gene in promoting rabdomyosarcoma tumor development. Our results contribute to the understanding of the role of syndecan-4 in skeletal muscle development, regeneration, and tumorigenesis.


Assuntos
Actinas/metabolismo , Rabdomiossarcoma/patologia , Sindecana-4/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina , Animais , Diferenciação Celular , Linhagem Celular , Variações do Número de Cópias de DNA , Humanos , Masculino , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Rabdomiossarcoma/metabolismo , Sindecana-4/antagonistas & inibidores , Sindecana-4/genética , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo
7.
Development ; 145(23)2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30389853

RESUMO

Self-renewal and differentiation of stem cells is one of the fundamental biological phenomena relying on proper chromatin organization. In our study, we describe a novel chromatin regulator encoded by the Drosophila small ovary (sov) gene. We demonstrate that sov is required in both the germline stem cells (GSCs) and the surrounding somatic niche cells to ensure GSC survival and differentiation. sov maintains niche integrity and function by repressing transposon mobility, not only in the germline, but also in the soma. Protein interactome analysis of Sov revealed an interaction between Sov and HP1a. In the germ cell nuclei, Sov colocalizes with HP1a, suggesting that Sov affects transposon repression as a component of the heterochromatin. In a position-effect variegation assay, we found a dominant genetic interaction between sov and HP1a, indicating their functional cooperation in promoting the spread of heterochromatin. An in vivo tethering assay and FRAP analysis revealed that Sov enhances heterochromatin formation by supporting the recruitment of HP1a to the chromatin. We propose a model in which sov maintains GSC niche integrity by regulating transposon silencing and heterochromatin formation.


Assuntos
Diferenciação Celular , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Inativação Gênica , Células Germinativas/citologia , Heterocromatina/metabolismo , Células-Tronco/citologia , Animais , Apoptose , Sobrevivência Celular , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genoma , Células Germinativas/metabolismo , Mutação/genética , Transdução de Sinais , Nicho de Células-Tronco , Células-Tronco/metabolismo , Transcrição Gênica
8.
J Fluoresc ; 30(3): 437-443, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32112289

RESUMO

Hot-band absorption and anti-Stokes emission properties of an organic fluorescent dye, Alexa Fluor 568, were characterized and compared with those of Rhodamine 101. The comparison of the properties (e.g., quantum efficiency, spectral distribution, thermal properties, and fluorescence lifetime) between the two dyes confirms that both dyes undergo the same process when excited in the red spectral region. Possible undesirable crosstalk effects and applications in dSTORM microscopy were demonstrated and discussed.

9.
J Cell Sci ; 130(4): 712-724, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062848

RESUMO

Dorsal closure of the Drosophila embryonic epithelium provides an excellent model system for the in vivo analysis of molecular mechanisms regulating cytoskeletal rearrangements. In this study, we investigated the function of the Drosophila spectraplakin Short stop (Shot), a conserved cytoskeletal structural protein, during closure of the dorsal embryonic epithelium. We show that Shot is essential for the efficient final zippering of the opposing epithelial margins. By using isoform-specific mutant alleles and genetic rescue experiments with truncated Shot variants, we demonstrate that Shot functions as an actin-microtubule cross-linker in mediating zippering. At the leading edge of epithelial cells, Shot regulates protrusion dynamics by promoting filopodia formation. Fluorescence recovery after photobleaching (FRAP) analysis and in vivo imaging of microtubule growth revealed that Shot stabilizes dynamic microtubules. The actin- and microtubule-binding activities of Shot are simultaneously required in the same molecule, indicating that Shot is engaged as a physical crosslinker in this process. We propose that Shot-mediated interactions between microtubules and actin filaments facilitate filopodia formation, which promotes zippering by initiating contact between opposing epithelial cells.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Morfogênese , Actinas/metabolismo , Animais , Proteínas de Drosophila/química , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Células Epiteliais/citologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas dos Microfilamentos/química , Mutação/genética , Domínios Proteicos , Pseudópodes/metabolismo
10.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1589-1604, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28554770

RESUMO

Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export.


Assuntos
Proteínas de Drosophila/genética , Proteínas dos Microfilamentos/genética , Proteínas Associadas à Matriz Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , RNA Mensageiro/genética , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosforilação , Ligação Proteica , Transporte de RNA/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/genética
11.
PLoS Biol ; 13(4): e1002121, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875822

RESUMO

Centralspindlin, a constitutive 2:2 heterotetramer of MKLP1 (a kinesin-6) and the non-motor subunit CYK4, plays important roles in cytokinesis. It is crucial for the formation of central spindle microtubule bundle structure. Its accumulation at the central antiparallel overlap zone is key for recruitment and regulation of downstream cytokinesis factors and for stable anchoring of the plasma membrane at the midbody. Both MKLP1 and CYK4 are required for efficient microtubule bundling. However, the mechanism by which CYK4 contributes to this is unclear. Here we performed structural and functional analyses of centralspindlin using high-speed atomic force microscopy, FÓ§rster resonance energy transfer analysis, and in vitro reconstitution. Our data reveal that CYK4 binds to a globular mass in the atypically long MKLP1 neck domain between the catalytic core and the coiled coil and thereby reconfigures the two motor domains in the MKLP1 dimer to be suitable for antiparallel microtubule bundling. Our work provides insights into the microtubule bundling during cytokinesis and into the working mechanisms of the kinesins with non-canonical neck structures.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Microtúbulos/metabolismo , Animais , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Humanos , Microscopia de Força Atômica , Proteínas Associadas aos Microtúbulos/metabolismo
12.
Anal Chem ; 89(2): 1092-1101, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28192993

RESUMO

Fluorescence anisotropy measurements of reagents compartmentalized into individual nanoliter droplets are shown to yield high-resolution binding curves from which precise dissociation constants (Kd) for protein-peptide interactions can be inferred. With the current platform, four titrations can be obtained per minute (based on ∼100 data points each), with stoichiometries spanning more than 2 orders of magnitude and requiring only tens of microliters of reagents. In addition to affinity measurements with purified components, Kd values for unpurified proteins in crude cell lysates can be obtained without prior knowledge of the concentration of the expressed protein, so that protein purification can be avoided. Finally, we show how a competition assay can be set up to perform focused library screens, so that compound labeling is not required anymore. These data demonstrate the utility of droplet compartments for the quantitative characterization of biomolecular interactions and establish fluorescence anisotropy imaging as a quantitative technique in a miniaturized droplet format, which is shown to be as reliable as its macroscopic test tube equivalent.

13.
Cell Biol Int ; 40(6): 696-707, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27006187

RESUMO

Ezrin-Radixin-Moesin proteins are highly conserved, actin-binding cytoskeletal proteins that play an essential role in microvilli formation, T-cell activation, and tumor metastasis by linking actin filaments to the plasma membrane. Recent studies demonstrated that the only Ezrin-Radixin-Moesin protein of Drosophila melanogaster, Moesin, is involved in mitotic spindle function through stabilizing cell shape and microtubules at the cell cortex. We previously observed that Moesin localizes to the mitotic spindle; hence, we tested for the biological significance of this surprising localization and investigated whether it plays a direct role in spindle function. To separate the cortical and spindle functions of Moesin during mitosis we combined cell biological and genetic methods. We used early Drosophila embryos, in which mitosis occurs in the absence of a cell cortex, and found in vivo evidence for the direct requirement of Moesin in mitotic spindle assembly and function. We also found that the accumulation of Moesin precedes the construction of the microtubule spindle, and the fusiform structure formed by Moesin persists even after the microtubules have disassembled.


Assuntos
Proteínas de Membrana/metabolismo , Fuso Acromático/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Ciclo Celular/fisiologia , Forma Celular/fisiologia , Citoplasma/metabolismo , Drosophila melanogaster , Proteínas de Membrana/genética , Microtúbulos/metabolismo , Mitose/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
14.
Nano Lett ; 15(5): 3217-23, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25915093

RESUMO

Coupling of light to the free electrons at metallic surfaces allows the confinement of electric fields to subwavelength dimensions, far below the optical diffraction limit. While this is routinely used to manipulate light at the nanoscale, in electro-optic devices and enhanced spectroscopic techniques, no characterization technique for imaging the underlying nanoscopic electromagnetic fields exists, which does not perturb the field or employ complex electron beam imaging. Here, we demonstrate the direct visualization of electromagnetic fields on patterned metallic substrates at nanometer resolution, exploiting a strong "autonomous" fluorescence-blinking behavior of single molecules within the confined fields allowing their localization. Use of DNA-constructs for precise positioning of fluorescence dyes on the surface induces this distance-dependent autonomous blinking thus completely obviating the need for exogenous agents or switching methods. Mapping such electromagnetic field distributions at nanometer resolution aids the rational design of nanometals for diverse photonic applications.


Assuntos
DNA/química , Campos Eletromagnéticos , Nanotecnologia , Óptica e Fotônica , Elétrons , Corantes Fluorescentes , Luz , Nanoestruturas/química , Propriedades de Superfície
15.
Biophys J ; 109(10): 2058-66, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26588565

RESUMO

Multilayered protein coats are crucial to the dormancy, robustness, and germination of bacterial spores. In Bacillus subtilis spores, the coat contains over 70 distinct proteins. Identifying which proteins reside in each layer may provide insight into their distinct functions. We present image analysis methods that determine the order and geometry of concentric protein layers by fitting a model description for a spheroidal fluorescent shell image to optical micrographs of spores incorporating fluorescent fusion proteins. The radius of a spherical protein shell can be determined with <10 nm error by fitting an equation to widefield fluorescence micrographs. Ellipsoidal shell axes can be fitted with comparable precision. The layer orders inferred for B. subtilis and B. megaterium are consistent with measurements in the literature. The aspect ratio of elongated spores and the tendency of some proteins to localize near their poles can be quantified, enabling measurement of structural anisotropy.


Assuntos
Proteínas de Bactérias/química , Esporos Bacterianos/ultraestrutura , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Esporos Bacterianos/metabolismo
16.
PLoS Genet ; 8(6): e1002738, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685418

RESUMO

Base-excision repair and control of nucleotide pools safe-guard against permanent uracil accumulation in DNA relying on two key enzymes: uracil-DNA glycosylase and dUTPase. Lack of the major uracil-DNA glycosylase UNG gene from the fruit fly genome and dUTPase from fruit fly larvae prompted the hypotheses that i) uracil may accumulate in Drosophila genomic DNA where it may be well tolerated, and ii) this accumulation may affect development. Here we show that i) Drosophila melanogaster tolerates high levels of uracil in DNA; ii) such DNA is correctly interpreted in cell culture and embryo; and iii) under physiological spatio-temporal control, DNA from fruit fly larvae, pupae, and imago contain greatly elevated levels of uracil (200-2,000 uracil/million bases, quantified using a novel real-time PCR-based assay). Uracil is accumulated in genomic DNA of larval tissues during larval development, whereas DNA from imaginal tissues contains much less uracil. Upon pupation and metamorphosis, uracil content in DNA is significantly decreased. We propose that the observed developmental pattern of uracil-DNA is due to the lack of the key repair enzyme UNG from the Drosophila genome together with down-regulation of dUTPase in larval tissues. In agreement, we show that dUTPase silencing increases the uracil content in DNA of imaginal tissues and induces strong lethality at the early pupal stages, indicating that tolerance of highly uracil-substituted DNA is also stage-specific. Silencing of dUTPase perturbs the physiological pattern of uracil-DNA accumulation in Drosophila and leads to a strongly lethal phenotype in early pupal stages. These findings suggest a novel role of uracil-containing DNA in Drosophila development and metamorphosis and present a novel example for developmental effects of dUTPase silencing in multicellular eukaryotes. Importantly, we also show lack of the UNG gene in all available genomes of other Holometabola insects, indicating a potentially general tolerance and developmental role of uracil-DNA in this evolutionary clade.


Assuntos
DNA/genética , Drosophila melanogaster/genética , Larva/genética , Pirofosfatases , Uracila , Animais , Linhagem Celular , DNA/química , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto , Instabilidade Genômica , Células HeLa , Humanos , Larva/crescimento & desenvolvimento , Pirofosfatases/genética , Interferência de RNA , Uracila/química , Uracila/metabolismo , Uracila/farmacologia , Uracila-DNA Glicosidase/genética
17.
Opt Express ; 22(16): 18940-8, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25320980

RESUMO

The reduction of out of focus signal is a general task in fluorescence microscopy and is especially important in the recently developed super-resolution techniques because of the degradation of the final image. Several illumination methods have been developed to provide decreased out of focus signal level relative to the common epifluorescent illumination. In this paper we examine the highly inclined and the total internal reflection illumination techniques using the ray tracing method. Two merit functions were introduced for the quantitative description of the excitation of the selected region. We studied the feasibility of illumination methods, and the required corrections arising from the imperfections of the optical elements.

18.
Biomed Opt Express ; 15(6): 3715-3726, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867795

RESUMO

In standard SMLM methods, the photoswitching of single fluorescent molecules and the data acquisition processes are independent, which leads to the detection of single molecule blinking events on several consecutive frames. This mismatch results in several data points with reduced localization precision, and it also increases the possibilities of overlapping. Here we discuss how the synchronization of the fluorophores' ON state to the camera exposure time increases the average intensity of the captured point spread functions and hence improves the localization precision. Simulations and theoretical results show that such synchronization leads to fewer localizations with 15% higher sum signal on average, while reducing the probability of overlaps by 10%.

19.
FEBS J ; 291(8): 1759-1779, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308815

RESUMO

Nuclear Piwi/Piwi-interacting RNA complexes mediate co-transcriptional silencing of transposable elements by inducing local heterochromatin formation. In Drosophila, sumoylation plays an essential role in the assembly of the silencing complex; however, the molecular mechanism by which the sumoylation machinery is recruited to the transposon loci is poorly understood. Here, we show that the Drosophila E3 SUMO-ligase Su(var)2-10 directly binds to the Piwi protein. This interaction is mediated by the SUMO-interacting motif-like (SIM-like) structure in the C-terminal domain of Su(var)2-10. We demonstrated that the SIM-like structure binds to a special region found in the MID domain of the Piwi protein, the structure of which is highly similar to the SIM-binding pocket of SUMO proteins. Abrogation of the Su(var)2-10-binding surface of the Piwi protein resulted in transposon derepression in the ovary of adult flies. Based on our results, we propose a model in which the Piwi protein initiates local sumoylation in the silencing complex by recruiting Su(var)2-10 to the transposon loci.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Feminino , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sítios de Ligação , Elementos de DNA Transponíveis/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
20.
Chem Commun (Camb) ; 60(10): 1325-1328, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38197520

RESUMO

Biocompatible Cu(II)-doped layered double hydroxide (CMA) nanoparticles were developed to combat reactive oxygen species. The 2-dimensional nanozymes showed both superoxide dismutase- and catalase-like activities in chemical assays, while proving as efficient antioxidants in the reduction of intracellular oxidative stress. The results indicate the great promise of CMA in antioxidant therapies.


Assuntos
Cobre , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Espécies Reativas de Oxigênio , Hidróxidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa