Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neurobiol Dis ; 65: 211-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24521780

RESUMO

Charcot-Marie-Tooth disease type 2B (CMT2B) is an inherited axonal peripheral neuropathy. It is characterised by prominent sensory loss, often complicated by severe ulcero-mutilations of toes or feet, and variable motor involvement. Missense mutations in RAB7A, the gene encoding the small GTPase Rab7, cause CMT2B and increase Rab7 activity. Rab7 is ubiquitously expressed and is involved in degradation through the lysosomal pathway. In the neurons, Rab7 plays a role in the long-range retrograde transport of signalling endosomes in the axons. Here we developed the first animal model of CMT2B, modelling one of the mutations (L129F) in Drosophila melanogaster. Behavioural assays show that this model recapitulates several hallmarks of the human disease. Upon expression of mutant Rab7 in the sensory neurons, larvae present with a reduction of temperature and pain perception. Furthermore, the larvae exhibit a crawling defect when the mutant protein is expressed in the motor neurons. Analysis of axonal transport of Rab7 positive vesicles in sensory neurons of Drosophila larvae and in neurites of mammalian neuroblastoma cells demonstrates that mutant vesicles pause less than their wild-type counterparts. This latter finding indicates that alterations in vesicle transport might contribute to the pathomechanism of CMT2B.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Mutação/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Diferenciação Celular , Linhagem Celular Transformada , Dendritos/patologia , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Laminopatias , Larva , Masculino , Atividade Motora/genética , Neuroblastoma/patologia , Células Receptoras Sensoriais/patologia , Transdução Genética , proteínas de unión al GTP Rab7
2.
Neurobiol Dis ; 68: 180-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24807208

RESUMO

Aminoacyl-tRNA synthetases are ubiquitously expressed proteins that charge tRNAs with their cognate amino acids. By ensuring the fidelity of protein synthesis, these enzymes are essential for the viability of every cell. Yet, mutations in six tRNA synthetases specifically affect the peripheral nerves and cause Charcot-Marie-Tooth (CMT) disease. The CMT-causing mutations in tyrosyl- and glycyl-tRNA synthetases (YARS and GARS, respectively) alter the activity of the proteins in a range of ways (some mutations do not impact charging function, while others abrogate it), making a loss of function in tRNA charging unlikely to be the cause of disease pathology. It is currently unknown which cellular mechanisms are triggered by the mutant enzymes and how this leads to neurodegeneration. Here, by expressing two pathogenic mutations (G240R, P234KY) in Drosophila, we generated a model for GARS-associated neuropathy. We observed compromised viability, and behavioral, electrophysiological and morphological impairment in flies expressing the cytoplasmic isoform of mutant GARS. Their features recapitulated several hallmarks of CMT pathophysiology and were similar to the phenotypes identified in our previously described Drosophila model of YARS-associated neuropathy. Furthermore, CG8316 and CG15599 - genes identified in a retinal degeneration screen to modify mutant YARS, also modified the mutant GARS phenotypes. Our study presents genetic evidence for common mutant-specific interactions between two CMT-associated aminoacyl-tRNA synthetases, lending support for a shared mechanism responsible for the synthetase-induced peripheral neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/genética , Glicina-tRNA Ligase/genética , Mutação/genética , Doenças do Sistema Nervoso Periférico/etiologia , Tirosina-tRNA Ligase/genética , Animais , Animais Geneticamente Modificados , Doença de Charcot-Marie-Tooth/patologia , Dextranos , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Humanos , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Fibras Nervosas/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Doenças do Sistema Nervoso Periférico/genética , Retina/patologia , Retina/ultraestrutura , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/etiologia , Degeneração Retiniana/genética , Rodaminas , Asas de Animais/patologia , Asas de Animais/ultraestrutura
3.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746182

RESUMO

Extracellular vesicles (EVs) are released by many cell types including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating ESCRT (endosomal sorting complex required for transport) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo Evenness Interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.

4.
J Cell Biol ; 223(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38842573

RESUMO

Extracellular vesicles (EVs) are released by many cell types, including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating endosomal sorting complex required for transport (ESCRT) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo evenness interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell-autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Complexos Endossomais de Distribuição Requeridos para Transporte , Vesículas Extracelulares , Neurônios Motores , Transdução de Sinais , Sinapses , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Vesículas Extracelulares/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Sinapses/metabolismo , Neurônios Motores/metabolismo , Autofagia , Sinaptotagminas/metabolismo , Sinaptotagminas/genética , Neuroglia/metabolismo
5.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014140

RESUMO

Neuromuscular junctions (NMJs) are evolutionarily ancient, specialized contacts between neurons and muscles. Axons and NMJs must endure mechanical strain through a lifetime of muscle contraction, making them vulnerable to aging and neurodegenerative conditions. However, cellular strategies for mitigating this mechanical stress remain unknown. In this study, we used Drosophila larval NMJs to investigate the role of actin and myosin (actomyosin)-mediated contractility in generating and responding to cellular forces at the neuron-muscle interface. We identified a new long-lived, low-turnover presynaptic actin core traversing the NMJ, which partly co-localizes with non-muscle myosin II (NMII). Neuronal RNAi of NMII induced disorganization of this core, suggesting that this structure might have contractile properties. Interestingly, neuronal RNAi of NMII also decreased NMII levels in the postsynaptic muscle proximal to neurons, suggesting that neuronal actomyosin rearrangements propagate their effects transsynaptically. We also observed reduced Integrin levels upon NMII knockdown, indicating that neuronal actomyosin disruption triggers rearrangements of Integrin-mediated connections between neurons and surrounding muscle tissue. In summary, our study identifies a previously uncharacterized presynaptic actomyosin subpopulation that upholds the neuronal mechanical continuum, transmits signals to adjacent muscle tissue, and collaborates with Integrin receptors to govern the mechanobiology of the neuromuscular junction.

6.
Nat Commun ; 14(1): 999, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890170

RESUMO

Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.


Assuntos
Actinas , Tirosina-tRNA Ligase , Animais , Humanos , Actinas/metabolismo , Doença de Charcot-Marie-Tooth/genética , Drosophila/genética , Glicina-tRNA Ligase/genética , Mutação , RNA de Transferência , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Linhagem Celular Tumoral
7.
Amino Acids ; 42(5): 1661-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21384131

RESUMO

Charcot-Marie-Tooth disease (CMT) is the major form of inherited peripheral neuropathy in humans. CMT is clinically and genetically heterogeneous and four aminoacyl-tRNA synthetases have been implicated in disease etiology. Mutations in the YARS gene encoding a tyrosyl-tRNA synthetase (TyrRS) lead to Dominant Intermediate CMT type C (DI-CMTC). Three dominant YARS mutations were so far associated with DI-CMTC. To further expand the spectrum of CMT causing genetic defects in this tRNA synthetase, we performed DNA sequencing of YARS coding regions in a cohort of 181 patients with various types of peripheral neuropathy. We identified a novel K265N substitution that in contrast to all previously described mutations is located at the anticodon recognition domain of the enzyme. Further genetic analysis revealed that this variant represents a benign substitution. Using our recently developed DI-CMTC Drosophila model, we tested in vivo the pathogenicity of this new YARS variant. We demonstrated that the developmental and behavioral defects induced by all DI-CMTC causing mutations were not present upon ubiquitous or panneuronal TyrRS K265N expression. Thus, in line with our genetic studies, functional analysis confirmed that the K265N substitution does not induce toxicity signs in Drosophila. The consistency observed throughout this work underscores the robustness of our DI-CMTC animal model and identifies Drosophila as a valid read-out platform to ascertain the pathogenicity of novel mutations to be identified in the future.


Assuntos
Doença de Charcot-Marie-Tooth/enzimologia , Doença de Charcot-Marie-Tooth/genética , Drosophila/genética , Mutação , Tirosina-tRNA Ligase/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila/enzimologia , Expressão Gênica , Vetores Genéticos , Humanos , Desempenho Psicomotor/fisiologia , Análise de Sequência de DNA
8.
Elife ; 102021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34324418

RESUMO

Synaptic membrane-remodeling events such as endocytosis require force-generating actin assembly. The endocytic machinery that regulates these actin and membrane dynamics localizes at high concentrations to large areas of the presynaptic membrane, but actin assembly and productive endocytosis are far more restricted in space and time. Here we describe a mechanism whereby autoinhibition clamps the presynaptic endocytic machinery to limit actin assembly to discrete functional events. We found that collective interactions between the Drosophila endocytic proteins Nwk/FCHSD2, Dap160/intersectin, and WASp relieve Nwk autoinhibition and promote robust membrane-coupled actin assembly in vitro. Using automated particle tracking to quantify synaptic actin dynamics in vivo, we discovered that Nwk-Dap160 interactions constrain spurious assembly of WASp-dependent actin structures. These interactions also promote synaptic endocytosis, suggesting that autoinhibition both clamps and primes the synaptic endocytic machinery, thereby constraining actin assembly to drive productive membrane remodeling in response to physiological cues.


Neurons constantly talk to each other by sending chemical signals across the tiny gap, or 'synapse', that separates two cells. While inside the emitting cell, these molecules are safely packaged into small, membrane-bound vessels. Upon the right signal, the vesicles fuse with the external membrane of the neuron and spill their contents outside, for the receiving cell to take up and decode. The emitting cell must then replenish its vesicle supply at the synapse through a recycling mechanism known as endocytosis. To do so, it uses dynamically assembling rod-like 'actin' filaments, which work in concert with many other proteins to pull in patches of membrane as new vesicles. The proteins that control endocytosis and actin assembly abound at neuronal synapses, and, when mutated, are linked to many neurological diseases. Unlike other cell types, neurons appear to 'pre-deploy' these actin-assembly proteins to synaptic membranes, but to keep them inactive under normal conditions. How neurons control the way this machinery is recruited and activated remains unknown. To investigate this question, Del Signore et al. conducted two sets of studies. First, they exposed actin to several different purified proteins in initial 'test tube' experiments. This revealed that, depending on the conditions, a group of endocytosis proteins could prevent or promote actin assembly: assembly occurred only if the proteins were associated with membranes. Next, Del Signore et al. mutated these proteins in fruit fly larvae, and performed live cell microscopy to determine their impact on actin assembly and endocytosis. Consistent with the test tube findings, endocytosis mutants had more actin assembly overall, implying that the proteins were required to prevent random actin assembly. However, the same mutants had reduced levels of endocytosis, suggesting that the proteins were also necessary for productive actin assembly. Together, these experiments suggest that, much like a mousetrap holds itself poised ready to spring, some endocytic proteins play a dual role to restrain actin assembly when and where it is not needed, and to promote it at sites of endocytosis. These results shed new light on how neurons might build and maintain effective, working synapses. Del Signore et al. hope that this knowledge may help to better understand and combat neurological diseases, such as Alzheimer's, which are linked to impaired membrane traffic and cell signalling.


Assuntos
Actinas/genética , Actinas/metabolismo , Drosophila/genética , Drosophila/metabolismo , Endocitose/genética , Sinapses/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endocitose/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Vesículas Sinápticas/metabolismo
9.
Nat Commun ; 10(1): 5045, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695036

RESUMO

Charcot-Marie-Tooth disease (CMT) is a length-dependent peripheral neuropathy. The aminoacyl-tRNA synthetases constitute the largest protein family implicated in CMT. Aminoacyl-tRNA synthetases are predominantly cytoplasmic, but are also present in the nucleus. Here we show that a nuclear function of tyrosyl-tRNA synthetase (TyrRS) is implicated in a Drosophila model of CMT. CMT-causing mutations in TyrRS induce unique conformational changes, which confer capacity for aberrant interactions with transcriptional regulators in the nucleus, leading to transcription factor E2F1 hyperactivation. Using neuronal tissues, we reveal a broad transcriptional regulation network associated with wild-type TyrRS expression, which is disturbed when a CMT-mutant is expressed. Pharmacological inhibition of TyrRS nuclear entry with embelin reduces, whereas genetic nuclear exclusion of mutant TyrRS prevents hallmark phenotypes of CMT in the Drosophila model. These data highlight that this translation factor may contribute to transcriptional regulation in neurons, and suggest a therapeutic strategy for CMT.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Núcleo Celular/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Predisposição Genética para Doença , Aminoacil-tRNA Sintetases/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal , Núcleo Celular/enzimologia , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/metabolismo , Feminino , Células HEK293 , Humanos , Larva , Masculino , Mutação , Doenças do Sistema Nervoso , Junção Neuromuscular , Neurônios/metabolismo , Fenótipo , Fatores de Transcrição/metabolismo
10.
Neurology ; 88(6): 533-542, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28077491

RESUMO

OBJECTIVE: To identify the unknown genetic cause in a nuclear family with an axonal form of peripheral neuropathy and atypical disease course. METHODS: Detailed neurologic, electrophysiologic, and neuropathologic examinations of the patients were performed. Whole exome sequencing of both affected individuals was done. The effect of the identified sequence variations was investigated at cDNA and protein level in patient-derived lymphoblasts. The plasma sphingoid base profile was analyzed. Functional consequences of neuron-specific downregulation of the gene were studied in Drosophila. RESULTS: Both patients present an atypical form of axonal peripheral neuropathy, characterized by acute or subacute onset and episodes of recurrent mononeuropathy. We identified compound heterozygous mutations cosegregating with disease and absent in controls in the SGPL1 gene, encoding sphingosine 1-phosphate lyase (SPL). The p.Ser361* mutation triggers nonsense-mediated mRNA decay. The missense p.Ile184Thr mutation causes partial protein degradation. The plasma levels of sphingosine 1-phosphate and sphingosine/sphinganine ratio were increased in the patients. Neuron-specific downregulation of the Drosophila orthologue impaired the morphology of the neuromuscular junction and caused progressive degeneration of the chemosensory neurons innervating the wing margin bristles. CONCLUSIONS: We suggest SPL deficiency as a cause of a distinct form of Charcot-Marie-Tooth disease in humans, thus extending the currently recognized clinical and genetic spectrum of inherited peripheral neuropathies. Our data emphasize the importance of sphingolipid metabolism for neuronal function.


Assuntos
Aldeído Liases/deficiência , Aldeído Liases/genética , Aldeído Liases/metabolismo , Doença de Charcot-Marie-Tooth/genética , Códon sem Sentido , Proteínas de Drosophila/metabolismo , Mutação de Sentido Incorreto , Adulto , Animais , Animais Geneticamente Modificados , Células Cultivadas , Doença de Charcot-Marie-Tooth/fisiopatologia , Estudos de Coortes , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Lisofosfolipídeos/sangue , Masculino , Neurônios/metabolismo , Neurônios/patologia , Irmãos , Esfingosina/análogos & derivados , Esfingosina/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa