Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2109617119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35353605

RESUMO

α-Synuclein (α-syn) phosphorylation at serine 129 (pS129­α-syn) is substantially increased in Lewy body disease, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the pathogenic relevance of pS129­α-syn remains controversial, so we sought to identify when pS129 modification occurs during α-syn aggregation and its role in initiation, progression and cellular toxicity of disease. Using diverse aggregation assays, including real-time quaking-induced conversion (RT-QuIC) on brain homogenates from PD and DLB cases, we demonstrated that pS129­α-syn inhibits α-syn fibril formation and seeded aggregation. We also identified lower seeding propensity of pS129­α-syn in cultured cells and correspondingly attenuated cellular toxicity. To build upon these findings, we developed a monoclonal antibody (4B1) specifically recognizing nonphosphorylated S129­α-syn (WT­α-syn) and noted that S129 residue is more efficiently phosphorylated when the protein is aggregated. Using this antibody, we characterized the time-course of α-syn phosphorylation in organotypic mouse hippocampal cultures and mice injected with α-syn preformed fibrils, and we observed aggregation of nonphosphorylated α-syn followed by later pS129­α-syn. Furthermore, in postmortem brain tissue from PD and DLB patients, we observed an inverse relationship between relative abundance of nonphosphorylated α-syn and disease duration. These findings suggest that pS129­α-syn occurs subsequent to initial protein aggregation and apparently inhibits further aggregation. This could possibly imply a potential protective role for pS129­α-syn, which has major implications for understanding the pathobiology of Lewy body disease and the continued use of reduced pS129­α-syn as a measure of efficacy in clinical trials.


Assuntos
Amiloide , Doença por Corpos de Lewy , Doença de Parkinson , Agregação Patológica de Proteínas , alfa-Sinucleína , Amiloide/metabolismo , Humanos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Serina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Br J Psychiatry ; 224(6): 237-244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584319

RESUMO

BACKGROUND: Multimorbidity, the presence of two or more health conditions, has been identified as a possible risk factor for clinical dementia. It is unclear whether this is due to worsening brain health and underlying neuropathology, or other factors. In some cases, conditions may reflect the same disease process as dementia (e.g. Parkinson's disease, vascular disease), in others, conditions may reflect a prodromal stage of dementia (e.g. depression, anxiety and psychosis). AIMS: To assess whether multimorbidity in later life was associated with more severe dementia-related neuropathology at autopsy. METHOD: We examined ante-mortem and autopsy data from 767 brain tissue donors from the UK, identifying physical multimorbidity in later life and specific brain-related conditions. We assessed associations between these purported risk factors and dementia-related neuropathological changes at autopsy (Alzheimer's-disease related neuropathology, Lewy body pathology, cerebrovascular disease and limbic-predominant age-related TDP-43 encephalopathy) with logistic models. RESULTS: Physical multimorbidity was not associated with greater dementia-related neuropathological changes. In the presence of physical multimorbidity, clinical dementia was less likely to be associated with Alzheimer's disease pathology. Conversely, conditions which may be clinical or prodromal manifestations of dementia-related neuropathology (Parkinson's disease, cerebrovascular disease, depression and other psychiatric conditions) were associated with dementia and neuropathological changes. CONCLUSIONS: Physical multimorbidity alone is not associated with greater dementia-related neuropathological change; inappropriate inclusion of brain-related conditions in multimorbidity measures and misdiagnosis of neurodegenerative dementia may better explain increased rates of clinical dementia in multimorbidity.


Assuntos
Demência , Multimorbidade , Humanos , Masculino , Idoso , Feminino , Demência/epidemiologia , Demência/patologia , Idoso de 80 Anos ou mais , Encéfalo/patologia , Reino Unido/epidemiologia , Transtornos Mentais/epidemiologia , Transtornos Mentais/patologia , Transtornos Cerebrovasculares/epidemiologia , Transtornos Cerebrovasculares/patologia , Autopsia , Doença de Alzheimer/patologia , Doença de Alzheimer/epidemiologia , Fatores de Risco , Pessoa de Meia-Idade , Diagnóstico Diferencial
3.
Brain ; 145(4): 1257-1263, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34999780

RESUMO

Krabbe disease is an infantile neurodegenerative disorder resulting from pathogenic variants in the GALC gene that causes accumulation of the toxic sphingolipid psychosine. GALC variants are also associated with Lewy body diseases, an umbrella term for age-associated neurodegenerative diseases in which the protein α-synuclein aggregates into Lewy bodies. To explore whether α-synuclein in Krabbe disease has pathological similarities to that in Lewy body disease, we performed an observational post-mortem study of Krabbe disease brain tissue (n = 4) compared to infant controls (n = 4) and identified widespread accumulations of α-synuclein. To determine whether α-synuclein in Krabbe disease brain displayed disease-associated pathogenic properties we evaluated its seeding capacity using the real-time quaking-induced conversion assay in two cases for which frozen tissue was available and strikingly identified aggregation into fibrils similar to those observed in Lewy body disease, confirming the prion-like capacity of Krabbe disease-derived α-synuclein. These observations constitute the first report of prion-like α-synuclein in the brain tissue of infants and challenge the putative view that α-synuclein pathology is merely an age-associated phenomenon, instead suggesting it results from alterations to biological pathways, such as sphingolipid metabolism. Our findings have important implications for understanding the mechanisms underlying Lewy body formation in Lewy body disease.


Assuntos
Leucodistrofia de Células Globoides , Doença por Corpos de Lewy , Príons , Sinucleinopatias , Encéfalo/patologia , Humanos , Doença por Corpos de Lewy/metabolismo , Príons/metabolismo , Esfingolipídeos/metabolismo , alfa-Sinucleína/metabolismo
4.
Brain ; 145(2): 542-554, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34927673

RESUMO

In this retrospective, multicentre, observational cohort study, we sought to determine the clinical, radiological, EEG, genetics and neuropathological characteristics of mitochondrial stroke-like episodes and to identify associated risk predictors. Between January 1998 and June 2018, we identified 111 patients with genetically determined mitochondrial disease who developed stroke-like episodes. Post-mortem cases of mitochondrial disease (n = 26) were identified from Newcastle Brain Tissue Resource. The primary outcome was to interrogate the clinico-radiopathological correlates and prognostic indicators of stroke-like episode in patients with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome (MELAS). The secondary objective was to develop a multivariable prediction model to forecast stroke-like episode risk. The most common genetic cause of stroke-like episodes was the m.3243A>G variant in MT-TL1 (n = 66), followed by recessive pathogenic POLG variants (n = 22), and 11 other rarer pathogenic mitochondrial DNA variants (n = 23). The age of first stroke-like episode was available for 105 patients [mean (SD) age: 31.8 (16.1)]; a total of 35 patients (32%) presented with their first stroke-like episode ≥40 years of age. The median interval (interquartile range) between first and second stroke-like episodes was 1.33 (2.86) years; 43% of patients developed recurrent stroke-like episodes within 12 months. Clinico-radiological, electrophysiological and neuropathological findings of stroke-like episodes were consistent with the hallmarks of medically refractory epilepsy. Patients with POLG-related stroke-like episodes demonstrated more fulminant disease trajectories than cases of m.3243A>G and other mitochondrial DNA pathogenic variants, in terms of the frequency of refractory status epilepticus, rapidity of progression and overall mortality. In multivariate analysis, baseline factors of body mass index, age-adjusted blood m.3243A>G heteroplasmy, sensorineural hearing loss and serum lactate were significantly associated with risk of stroke-like episodes in patients with the m.3243A>G variant. These factors informed the development of a prediction model to assess the risk of developing stroke-like episodes that demonstrated good overall discrimination (area under the curve = 0.87, 95% CI 0.82-0.93; c-statistic = 0.89). Significant radiological and pathological features of neurodegeneration were more evident in patients harbouring pathogenic mtDNA variants compared with POLG: brain atrophy on cranial MRI (90% versus 44%, P < 0.001) and reduced mean brain weight (SD) [1044 g (148) versus 1304 g (142), P = 0.005]. Our findings highlight the often idiosyncratic clinical, radiological and EEG characteristics of mitochondrial stroke-like episodes. Early recognition of seizures and aggressive instigation of treatment may help circumvent or slow neuronal loss and abate increasing disease burden. The risk-prediction model for the m.3243A>G variant can help inform more tailored genetic counselling and prognostication in routine clinical practice.


Assuntos
Síndrome MELAS , Doenças Mitocondriais , Acidente Vascular Cerebral , Adulto , DNA Mitocondrial/genética , Humanos , Síndrome MELAS/genética , Doenças Mitocondriais/complicações , Doenças Mitocondriais/genética , Mutação , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/genética
5.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298649

RESUMO

Mitochondrial diseases represent the most common inherited neurometabolic disorders, for which no effective therapy currently exists for most patients. The unmet clinical need requires a more comprehensive understanding of the disease mechanisms and the development of reliable and robust in vivo models that accurately recapitulate human disease. This review aims to summarise and discuss various mouse models harbouring transgenic impairments in genes that regulate mitochondrial function, specifically their neurological phenotype and neuropathological features. Ataxia secondary to cerebellar impairment is one of the most prevalent neurological features of mouse models of mitochondrial dysfunction, consistent with the observation that progressive cerebellar ataxia is a common neurological manifestation in patients with mitochondrial disease. The loss of Purkinje neurons is a shared neuropathological finding in human post-mortem tissues and numerous mouse models. However, none of the existing mouse models recapitulate other devastating neurological phenotypes, such as refractory focal seizures and stroke-like episodes seen in patients. Additionally, we discuss the roles of reactive astrogliosis and microglial reactivity, which may be driving the neuropathology in some of the mouse models of mitochondrial dysfunction, as well as mechanisms through which cellular death may occur, beyond apoptosis, in neurons undergoing mitochondrial bioenergy crisis.


Assuntos
Ataxia Cerebelar , Doenças Mitocondriais , Camundongos , Animais , Humanos , Ataxia/genética , Ataxia Cerebelar/patologia , Células de Purkinje/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Convulsões/patologia , Fenótipo , Modelos Animais de Doenças
6.
Neurobiol Dis ; 168: 105698, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314318

RESUMO

Dementia with Lewy bodies (DLB) is the second most common neurodegenerative cause of dementia, behind Alzheimer's disease (AD). The profile of inflammation in AD has been extensively researched in recent years, with evidence that chronic peripheral inflammation in midlife increases the risk of late-onset AD, and data supporting inflammation being associated with disease progression. In contrast, our understanding of the role of inflammation in DLB is less developed. Most research to date has examined inflammation in related disorders, such as Parkinson's disease, but there is now a growing range of literature examining inflammation in DLB itself. We present a review of the literature in this field, exploring a range of research methodologies including those quantifying markers of inflammation in cerebrospinal fluid, peripheral blood, post-mortem brain tissue, and using neuroimaging and preclinical data. Our review reveals evidence from PET imaging and peripheral blood analysis to support an increase in cerebral and peripheral inflammation in mild or prodromal DLB, that dissipates with disease progression. We present evidence from post-mortem brain tissue and pre-clinical studies that indicate α-synuclein directly promotes inflammation, but that also support the presence of AD co-pathology as an important factor in the profile of neuroinflammation in DLB. We propose that specific markers of inflammation may play a sentinel role in the mild stage of the disease, particularly when combined with AD pathology. We advocate further examination of the profile of inflammation in DLB through robust longitudinal studies, to enhance our understanding of the pathogenesis of the disease. The goal should be to utilise future results to develop a composite biomarker to aid diagnosis of DLB, and to potentially identify novel therapeutic targets.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Alzheimer/complicações , Biomarcadores/líquido cefalorraquidiano , Progressão da Doença , Humanos , Inflamação , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia
7.
Neuropathol Appl Neurobiol ; 48(6): e12833, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35790454

RESUMO

AIMS: Alpers' syndrome is a severe neurodegenerative disease typically caused by bi-allelic variants in the mitochondrial DNA (mtDNA) polymerase gene, POLG, leading to mtDNA depletion. Intractable epilepsy, often with an occipital focus, and extensive neurodegeneration are prominent features of Alpers' syndrome. Mitochondrial oxidative phosphorylation (OXPHOS) is severely impaired with mtDNA depletion and is likely to be a major contributor to the epilepsy and neurodegeneration in Alpers' syndrome. We hypothesised that parvalbumin-positive(+) interneurons, a neuronal class critical for inhibitory regulation of physiological cortical rhythms, would be particularly vulnerable in Alpers' syndrome due to the excessive energy demands necessary to sustain their fast-spiking activity. METHODS: We performed a quantitative neuropathological investigation of inhibitory interneuron subtypes (parvalbumin+, calretinin+, calbindin+, somatostatin interneurons+) in postmortem neocortex from 14 Alpers' syndrome patients, five sudden unexpected death in epilepsy (SUDEP) patients (to control for effects of epilepsy) and nine controls. RESULTS: We identified a severe loss of parvalbumin+ interneurons and clear evidence of OXPHOS impairment in those that remained. Comparison of regional abundance of interneuron subtypes in control tissues demonstrated enrichment of parvalbumin+ interneurons in the occipital cortex, while other subtypes did not exhibit such topographic specificity. CONCLUSIONS: These findings suggest that the vulnerability of parvalbumin+ interneurons to OXPHOS deficits coupled with the high abundance of parvalbumin+ interneurons in the occipital cortex is a key factor in the aetiology of the occipital-predominant epilepsy that characterises Alpers' syndrome. These findings provide novel insights into Alpers' syndrome neuropathology, with important implications for the development of preclinical models and disease-modifying therapeutics.


Assuntos
Esclerose Cerebral Difusa de Schilder , Epilepsia , Doenças Neurodegenerativas , DNA Mitocondrial/genética , Esclerose Cerebral Difusa de Schilder/complicações , Epilepsia/patologia , Humanos , Interneurônios/patologia , Doenças Neurodegenerativas/complicações , Parvalbuminas/genética
8.
Mov Disord ; 37(2): 302-314, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34779538

RESUMO

BACKGROUND: Mitochondrial dysfunction within neurons, particularly those of the substantia nigra, has been well characterized in Parkinson's disease and is considered to be related to the pathogenesis of this disorder. Dysfunction within this important organelle has been suggested to impair neuronal communication and survival; however, the reliance of astrocytes on mitochondria and the impact of their dysfunction on this essential cell type are less well characterized. OBJECTIVE: This study aimed to uncover whether astrocytes harbor oxidative phosphorylation (OXPHOS) deficiencies in Parkinson's disease and whether these deficiencies are more likely to occur in astrocytes closely associated with neurons or those more distant from them. METHODS: Postmortem human brain sections from patients with Parkinson's disease were subjected to imaging mass cytometry for individual astrocyte analysis of key OXPHOS proteins across all five complexes. RESULTS: We show the variability in the astrocytic expression of mitochondrial proteins between individuals. In addition, we found that there is evidence of deficiencies in respiratory chain subunit expression within these important glia and changes, particularly in mitochondrial mass, associated with Parkinson's disease and that are not simply a consequence of advancing age. CONCLUSION: Our data show that astrocytes, like neurons, are susceptible to mitochondrial defects and that these could have an impact on their reactivity and ability to support neurons in Parkinson's disease.


Assuntos
Astrócitos , Doença de Parkinson , Astrócitos/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
9.
Am J Geriatr Psychiatry ; 30(9): 964-975, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35283023

RESUMO

OBJECTIVES: The objective of this study was to investigate the expression of genes in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), both at the mild cognitive impairment (MCI) and dementia stages, to improve our understanding of disease pathophysiology and investigate the potential for diagnostic and prognostic biomarkers based on mRNA expression. DESIGN: Cross-sectional observational study. SETTING: University research center. PARTICIPANTS: People with MCI with Lewy bodies (MCI-LB, n=55), MCI-AD (n=19), DLB (n=38), AD (n=24) and a cognitively unimpaired comparison group (n=28). MEASUREMENTS: Ribonucleic acid sequencing of whole blood. Differentially expressed genes (DEGs) were identified and gene set enrichment analysis was carried out. RESULTS: Compared with the cognitively unimpaired group, there were 22 DEGs in MCI-LB/DLB and 61 DEGs in MCI-AD/AD. DEGS were also identified when comparing the two disease groups. Expression of ANP32A was associated with more rapid cognitive decline in MCI-AD/AD. Gene set enrichment analysis identified downregulation in gene sets including MYC targets and oxidative phosphorylation in MCI-LB/DLB; upregulation of immune and inflammatory responses in MCI-AD/AD; and upregulation of interferon-α and -γ responses in MCI-AD/AD compared with MCI-LB/DLB. CONCLUSION: This study identified multiple DEGs in MCI-LB/DLB and MCI-AD/AD. One of these DEGs, ANP32A, may be a prognostic marker in AD. Genes related to mitochondrial function were downregulated in MCI-LB/DLB. Previously reported upregulation of genes associated with inflammation and immune responses in MCI-AD/AD was confirmed in this cohort. Differences in interferon responses between MCI-AD/AD and MCI-LB/DLB suggest that there are key differences in peripheral immune responses between these diseases.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença por Corpos de Lewy , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/diagnóstico , Estudos Transversais , Humanos , Doença por Corpos de Lewy/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA
10.
Neurobiol Dis ; 149: 105226, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33347975

RESUMO

Abnormal excitability in cortical networks has been reported in patients and animal models of Alzheimer's disease (AD), and other neurodegenerative conditions. Whether hyperexcitability is a core feature of alpha(α)-synucleinopathies, including dementia with Lewy bodies (DLB) is unclear. To assess this, we used two murine models of DLB that express either human mutant α-synuclein (α-syn) the hA30P, or human wild-type α-syn (hWT-α-syn) mice. We observed network hyperexcitability in vitro in young (2-5 months), pre-symptomatic transgenic α-syn mice. Interictal discharges (IIDs) were seen in the extracellular local field potential (LFP) in the hippocampus in hA30P and hWT-α-syn mice following kainate application, while only gamma frequency oscillations occurred in control mice. In addition, the concentration of the GABAA receptor antagonist (gabazine) needed to evoke IIDs was lower in slices from hA30P mice compared to control mice. hA30P mice also showed increased locomotor activity in the open field test compared to control mice. Intracellular recordings from CA3 pyramidal cells showed a more depolarised resting membrane potential in hA30P mice. Quadruple immunohistochemistry for human α-syn, and the mitochondrial markers, porin and the complex IV enzyme cytochrome c oxidase subunit 1 (COX1) in parvalbumin (PV+)-expressing interneurons showed that 25% of PV+ cells contained human α-syn in hA30P mice. While there was no change in PV expression, COX1 expression was significantly increased in PV+ cells in hA30P mice, perhaps reflecting a compensatory change to support PV+ interneuron activity. Our findings suggest that hippocampal network hyperexcitability may be an important early consequence of α-syn-mediated impairment of neuronal/synaptic function, which occurs without any overt loss of PV interneurons. The therapeutic benefit of targeting network excitability early in the disease stage should be explored with respect to α-synucleinopathies such as DLB.


Assuntos
Ritmo Gama/fisiologia , Hipocampo/metabolismo , Mutação/fisiologia , Rede Nervosa/metabolismo , alfa-Sinucleína/biossíntese , Fatores Etários , Animais , Relação Dose-Resposta a Droga , Feminino , Ritmo Gama/efeitos dos fármacos , Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Humanos , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiopatologia , Técnicas de Cultura de Órgãos , alfa-Sinucleína/genética
11.
Acta Neuropathol ; 141(4): 511-526, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33515275

RESUMO

Accumulation of the protein α-synuclein into insoluble intracellular deposits termed Lewy bodies (LBs) is the characteristic neuropathological feature of LB diseases, such as Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with LB (DLB). α-Synuclein aggregation is thought to be a critical pathogenic event in the aetiology of LB disease, based on genetic analyses, fundamental studies using model systems, and the observation of LB pathology in post-mortem tissue. However, some monogenic disorders not traditionally characterised as synucleinopathies, such as lysosomal storage disorders, iron storage disorders and mitochondrial diseases, appear disproportionately vulnerable to the deposition of LBs, perhaps suggesting the process of LB formation may be a result of processes perturbed as a result of these conditions. The present review discusses biological pathways common to monogenic disorders associated with LB formation, identifying catabolic processes, particularly related to lipid homeostasis, autophagy and mitochondrial function, as processes that could contribute to LB formation. These findings are discussed in the context of known mediators of α-synuclein aggregation, highlighting the potential influence of impairments to these processes in the aetiology of LB formation.


Assuntos
Hemocromatose/patologia , Corpos de Lewy/patologia , Doenças por Armazenamento dos Lisossomos/patologia , Doenças Mitocondriais/patologia , alfa-Sinucleína/metabolismo , Hemocromatose/metabolismo , Humanos , Corpos de Lewy/metabolismo , Metabolismo dos Lipídeos/fisiologia , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo
12.
J Neural Transm (Vienna) ; 128(10): 1567-1575, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34056672

RESUMO

Professor Kurt Jellinger is well known for his seminal work on the neuropathology of age-associated neurodegenerative disorders, particularly Lewy body diseases. However, it is less well known that he also contributed important insights into the neuropathological features of several paediatric neurometabolic diseases, including Alpers-Huttenlocher syndrome, a syndrome of mitochondrial disease caused by POLG mutations, and infantile neuroaxonal dystrophy, a phenotype resulting from PLA2G6 mutations. Despite these rare diseases occurring in early life, they share many important pathological overlaps with age-associated Lewy body disease, particularly dysregulation of α-synuclein. In this review, we describe several neurometabolic diseases linked to Lewy body disease mechanisms, and discuss the wider context to pathological overlaps between neurometabolic and Lewy body diseases. In particular, we will focus on how understanding disease mechanisms in neurometabolic disorders with dysregulated α-synuclein may generate insights into predisposing factors for α-synuclein aggregation in idiopathic Lewy body diseases.


Assuntos
Doença por Corpos de Lewy , Doenças Neurodegenerativas , Humanos , Doença por Corpos de Lewy/genética , Fenótipo , Doenças Raras , alfa-Sinucleína/genética
13.
Subcell Biochem ; 91: 75-106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30888650

RESUMO

This chapter describes the main neuropathological features of the most common age associated neurodegenerative diseases including Alzheimer's disease, Lewy body diseases, vascular dementia and the various types of frontotemporal lobar degeneration. In addition, the more recent concepts of primary age-related tauopathy and ageing-related tau astrogliopathy as well as chronic traumatic encephalopathy are briefly described. One section is dedicated to cerebral multi-morbidity as it is becoming increasingly clear that the old brain is characterised by the presence of multiple pathologies (to varying extent) rather than by one single, disease specific pathology alone. The main aim of this chapter is to inform the reader about the neuropathological basics of age associated neurodegenerative diseases as we feel this is crucial to meaningfully interpret the vast literature that is published in the broad field of dementia research.


Assuntos
Envelhecimento/patologia , Doenças Neurodegenerativas/patologia , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Doenças Neurodegenerativas/metabolismo , Proteínas tau/metabolismo
14.
J Neurochem ; 150(5): 612-625, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31055836

RESUMO

Synucleinopathies including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are characterized by the abnormal accumulation and propagation of α-synuclein (α-syn) pathology in the central and peripheral nervous system as Lewy bodies or glial cytoplasmic inclusions. Several antibodies against α-syn have been developed since it was first detected as the major component of Lewy bodies and glial cytoplasmic inclusions. Over the years, researchers have generated specific antibodies that alleviate the accumulation of intracellular aggregated α-syn and associated pathology in cellular and preclinical models of synucleinopathies. So far, antibodies have been the first choice as tools for research and diagnosis and currently, a wide variety of antibody fragments have been developed as an alternative to full-length antibodies for increasing its therapeutic usefulness. Recently, conformation specific antibody-based approaches have been found to be promising as therapeutic strategies, both to block α-syn aggregation and ameliorate the resultant cytotoxicity, and as diagnostic tools. In this review, we summarize different α-syn specific antibodies and provide their usefulness in tackling synucleinopathies. This article is part of the Special Issue "Synuclein".


Assuntos
Anticorpos/imunologia , Sinucleinopatias/terapia , alfa-Sinucleína/imunologia , Anticorpos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Especificidade de Anticorpos , Biomarcadores , Diagnóstico Tardio , Epitopos/imunologia , Humanos , Fragmentos de Imunoglobulinas/imunologia , Testes Imunológicos/métodos , Doença de Parkinson/diagnóstico , Doença de Parkinson/imunologia , Doença de Parkinson/terapia , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/prevenção & controle , Conformação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/imunologia , Anticorpos de Domínio Único/imunologia , Sinucleinopatias/diagnóstico , Sinucleinopatias/imunologia , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/química
15.
J Neurochem ; 150(5): 626-636, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31265130

RESUMO

Parkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease and is estimated to affect approximately 1-4% of individuals aged over 60 years old. Although considerable efforts have been invested into developing disease-modifying therapies for Parkinson's disease, such efforts have been confounded by the difficulty in accurately diagnosing Parkinson's disease during life to enable accurate patient stratification for clinical trialling of candidate therapeutics. Therefore, the search for effective biomarkers that can be accurately evaluated during life with non-invasive means is a pressing issue in the field. Since the discovery of α-synuclein (α-syn) as a protein linked to a familial form of Parkinson's disease, later identified as the major protein component of the neuropathological hallmark of idiopathic Parkinson's disease, considerable interest has focused on this protein and its distinct conformers. We describe here the progress that has been made in the area of Parkinson's disease biomarker discovery with a focus on α-synuclein. In particular, we highlight the novel assays that have been employed and the increasing complexity in evaluating α-synuclein with regard to the considerable diversity of conformers that exist in the biofluids and peripheral tissues under disease conditions. "This article is part of the Special Issue Synuclein."


Assuntos
Doença de Parkinson/diagnóstico , alfa-Sinucleína/análise , Biomarcadores , Western Blotting , Líquidos Corporais/química , Encéfalo/diagnóstico por imagem , Estudos Transversais , Progressão da Doença , Diagnóstico Precoce , Ensaio de Imunoadsorção Enzimática , Gônadas/química , Humanos , Estudos Longitudinais , Espectrometria de Massas , Mucosa/química , Especificidade de Órgãos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Fosforilação , Tomografia por Emissão de Pósitrons , Agregados Proteicos , Processamento de Proteína Pós-Traducional , Glândulas Salivares/química , Pele/química , alfa-Sinucleína/química
16.
Mov Disord ; 33(6): 982-991, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29570843

RESUMO

BACKGROUND: Dementia with Lewy bodies is characterized by transient clinical features, including fluctuating cognition and visual hallucinations, implicating dysfunction of cerebral hub regions, such as the pulvinar nuclei of the thalamus. However, the pulvinar is typically only mildly affected by Lewy body pathology in dementia with Lewy bodies, suggesting additional factors may account for its proposed dysfunction. METHODS: We conducted a comprehensive analysis of postmortem pulvinar tissue using whole-transcriptome RNA sequencing, protein expression analysis, and histological evaluation. RESULTS: We identified 321 transcripts as significantly different between dementia with Lewy bodies cases and neurologically normal controls, with gene ontology pathway analysis suggesting the enrichment of transcripts related to synapses and positive regulation of immune functioning. At the protein level, proteins related to synaptic efficiency were decreased, and general synaptic markers remained intact. Analysis of glial subpopulations revealed astrogliosis without activated microglia, which was associated with synaptic changes but not neurodegenerative pathology. DISCUSSION: These results indicate that the pulvinar, a region with relatively low Lewy body pathological burden, manifests changes at the molecular level that differ from previous reports in a more severely affected region. We speculate that these alterations result from neurodegenerative changes in regions connected to the pulvinar and likely contribute to a variety of cognitive changes resulting from decreased cortical synchrony in dementia with Lewy bodies. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Expressão Gênica/fisiologia , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/fisiopatologia , Pulvinar/metabolismo , Pulvinar/patologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Estudos de Coortes , Diagnóstico , Dinaminas/genética , Dinaminas/metabolismo , Feminino , Ontologia Genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Alucinações/etiologia , Humanos , Masculino , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , RNA Mensageiro/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
17.
Acta Neuropathol ; 134(3): 459-473, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28638989

RESUMO

Cerebral white matter lesions (WML) encompass axonal loss and demyelination, and the pathogenesis is assumed to be small vessel disease (SVD)-related ischemia. However, WML may also result from the activation of Wallerian degeneration as a consequence of cortical Alzheimer's disease (AD) pathology, i.e. hyperphosphorylated tau (HPτ) and amyloid-beta (Aß) deposition. WML seen in AD have a posterior predominance compared to non-demented individuals but it is unclear whether the pathological and molecular signatures of WML differ between these two groups. We investigated differences in the composition and aetiology of parietal WML from AD and non-demented controls. Parietal WML tissue from 55 human post-mortem brains (AD, n = 27; non-demented controls, n = 28) were quantitatively assessed for axonal loss and demyelination, as well as for cortical HPτ and Aß burden and SVD. Biochemical assessment included Wallerian degeneration protease calpain and the myelin-associated glycoprotein (MAG) to proteolipid protein (PLP) ratio (MAG:PLP) as a measure of hypoperfusion. WML severity was associated with both axonal loss and demyelination in AD, but only with demyelination in controls. Calpain was significantly increased in WML tissue in AD, whereas MAG:PLP was significantly reduced in controls. Calpain levels were associated with increasing amounts of cortical AD-pathology but not SVD. We conclude that parietal WML seen in AD differ in their pathological composition and aetiology compared to WML seen in aged controls: WML seen in AD may be associated with Wallerian degeneration that is triggered by cortical AD-pathology, whereas WML in aged controls are due to ischaemia. Hence, parietal WML as seen on MRI should not invariably be interpreted as a surrogate biomarker for SVD as they may be indicative of cortical AD-pathology, and therefore, AD should also be considered as the main underlying cause for cognitive impairment in cases with parietal WML.


Assuntos
Doença de Alzheimer/patologia , Doenças de Pequenos Vasos Cerebrais/patologia , Degeneração Neural/patologia , Lobo Parietal/patologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Doenças de Pequenos Vasos Cerebrais/complicações , Feminino , Humanos , Masculino , Degeneração Neural/complicações
18.
Mov Disord ; 32(3): 414-422, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28059471

RESUMO

BACKGROUND: Complex visual hallucinations occur in 70%-80% of dementia with Lewy bodies patients and significantly affect well-being. Despite the prevalence of visual hallucinations in dementia with Lewy bodies, the neuropathological basis of this phenomenon is poorly understood. The pulvinar nucleus of the thalamus has not previously been neuropathologically examined, but has been linked to visual hallucinations in dementia with Lewy bodies. The objective of this study was to investigate whether neuropathological or morphometric changes occur in the pulvinar nucleus in dementia with Lewy bodies cases that may contribute to visual hallucinations. METHODS: Postmortem pulvinar tissue was acquired from 8 individuals with dementia with Lewy bodies, 8 with Alzheimer's disease, and 8 control cases and was analyzed using stereological and quantitative neuropathological techniques. RESULTS: Lewy body pathology was present throughout the pulvinar in dementia with Lewy bodies but was most severe in the medial pulvinar. Neuronal loss was found in the lateral pulvinar in dementia with Lewy bodies and Alzheimer's disease but was more severe in dementia with Lewy bodies. CONCLUSIONS: The pulvinar has an important role in visual attention, visual target selection and affective visual perception. These functions are thought to be deficient in dementia with Lewy bodies and may contribute a vulnerability to visual hallucinations. Therefore, this study has demonstrated neuropathological changes that may promote the manifestation of visual hallucinations in dementia with Lewy bodies. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer/patologia , Alucinações/patologia , Doença por Corpos de Lewy/patologia , Pulvinar/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Alucinações/etiologia , Humanos , Doença por Corpos de Lewy/complicações , Masculino
19.
J Neural Transm (Vienna) ; 124(6): 671-683, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28265813

RESUMO

A tissue microarray (TMA) has previously been developed for use in assessment of neurodegenerative diseases. We investigated the variation of pathology loads in semi-quantitative score categories and how pathology load related to disease progression. Post-mortem tissue from 146 cases were used; Alzheimer's disease (AD) (n = 36), Lewy body disease (LBD) (n = 56), mixed AD/dementia with Lewy bodies (n = 14) and controls (n = 40). TMA blocks (one per case) were constructed using tissue cores from 15 brain regions including cortical and subcortical regions. TMA tissue sections were stained for hyperphosphorylated tau (HP-T), ß amyloid and α-synuclein (αsyn), and quantified using an automated image analysis system. Cases classified as Braak stage VI displayed a wide variation in HP-T pathology in the entorhinal cortex (interquartile range 4.13-44.03%). The interquartile range for ß amyloid in frontal cortex in cases classified as Thal phase 5 was 6.75-17.03% and for αsyn in the cingulate in cases classified as McKeith neocortical LBD was 0.04-0.58%. In AD and control cases, HP-T load predicted the Braak stage (p < 0.001), ß amyloid load predicted Thal phase (p < 0.001) and αsyn load in LBD cases predicted McKeith type of LBD (p < 0.001). Quantitative data from TMA assessment highlight the range in pathological load across cases classified with 'severe' pathology and is beneficial to further elucidate the heterogeneity of neurodegenerative diseases. Quantifying pathology in multiple brain regions may allow identification of novel clinico-pathological phenotypes for the improvement of intra vitam stratification of clinical cohorts according to underlying pathologies.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Doença por Corpos de Lewy/metabolismo , Reconhecimento Automatizado de Padrão , Análise Serial de Tecidos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Feminino , Humanos , Imuno-Histoquímica , Doença por Corpos de Lewy/patologia , Masculino , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação , Índice de Gravidade de Doença , Análise Serial de Tecidos/métodos , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
20.
Am J Geriatr Psychiatry ; 25(6): 595-604, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28190674

RESUMO

OBJECTIVE: Patients with dementia with Lewy bodies (DLB) often experience visual hallucinations, which are related to decreased quality of life for patients and increased caregiver distress. The pathologic changes that contribute to visual hallucinations are not known, but several hypotheses implicate deficient attentional processing. The superior colliculus has a role in visual attention and planning eye movements and has been directly implicated in several models of visual hallucinations. Therefore, the present study sought to identify neurodegenerative changes that may contribute to hallucinations in DLB. METHODS: Postmortem superior colliculus tissue from 13 comparison, 10 DLB, and 10 Alzheimer disease (AD) cases was evaluated using quantitative neuropathologic methods. RESULTS: α-Synuclein and tau deposition were more severe in deeper layers of the superior colliculus. DLB cases had neuronal density reductions in the stratum griseum intermedium, an important structure in directing attention toward visual targets. In contrast, neuronal density was reduced in all laminae of the superior colliculus in AD. CONCLUSION: These findings suggest that regions involved in directing attention toward visual targets are subject to neurodegenerative changes in DLB. Considering several hypotheses of visual hallucinations implicating dysfunctional attention toward external stimuli, these findings may provide evidence of pathologic changes that contribute to the manifestation of visual hallucinations in DLB.


Assuntos
Alucinações/patologia , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Degeneração Neural/patologia , Colículos Superiores/metabolismo , Colículos Superiores/patologia , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Estudos de Casos e Controles , Contagem de Células , Feminino , Alucinações/complicações , Humanos , Doença por Corpos de Lewy/complicações , Masculino , Pessoa de Meia-Idade , Tauopatias/complicações , Tauopatias/metabolismo , Tauopatias/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa