Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Glob Chang Biol ; 28(22): 6696-6710, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36056462

RESUMO

Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.


Assuntos
Micorrizas , Solo , Animais , Biodiversidade , Ecossistema , Florestas , Fungos , Humanos , Plantas , Microbiologia do Solo
2.
J Environ Manage ; 299: 113562, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34425499

RESUMO

The concentration of nitrous oxide (N2O), an ozone-depleting greenhouse gas, is rapidly increasing in the atmosphere. Most atmospheric N2O originates in terrestrial ecosystems, of which the majority can be attributed to microbial cycling of nitrogen in agricultural soils. Here, we demonstrate how the abundance of nitrogen cycling genes vary across intensively managed agricultural fields and adjacent restored wetlands in the Sacramento-San Joaquin Delta in California, USA. We found that the abundances of nirS and nirK genes were highest at the intensively managed organic-rich cornfield and significantly outnumber any other gene abundances, suggesting very high N2O production potential. The quantity of nitrogen transforming genes, particularly those responsible for denitrification, nitrification and DNRA, were highest in the agricultural sites, whereas nitrogen fixation and ANAMMOX was strongly associated with the wetland sites. Although the abundance of nosZ genes was also high at the agricultural sites, the ratio of nosZ genes to nir genes was significantly higher in wetland sites indicating that these sites could act as a sink of N2O. These findings suggest that wetland restoration could be a promising natural climate solution not only for carbon sequestration but also for reduced N2O emissions.


Assuntos
Microbiota , Áreas Alagadas , Desnitrificação , Nitrogênio , Ciclo do Nitrogênio , Óxido Nitroso/análise , Solo , Microbiologia do Solo
3.
Glob Chang Biol ; 25(8): 2530-2543, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30955227

RESUMO

Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2 O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long-term studies were uncommon, with most data coming from studies lasting 2-3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p < 0.001) decreased N leaching and significantly (p < 0.001) increased SOC sequestration without having significant (p > 0.05) effects on direct N2 O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2 -eq ha-1  year-1 . One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non-legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.


Assuntos
Gases de Efeito Estufa , Agricultura , Produção Agrícola , Produtos Agrícolas , Nitrogênio , Solo
4.
Biogeochemistry ; 167(4): 523-543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707516

RESUMO

Peatlands play a crucial role in the global carbon (C) cycle, making their restoration a key strategy for mitigating greenhouse gas (GHG) emissions and retaining C. This study analyses the most common restoration pathways employed in boreal and temperate peatlands, potentially applicable in tropical peat swamp forests. Our analysis focuses on the GHG emissions and C retention potential of the restoration measures. To assess the C stock change in restored (rewetted) peatlands and afforested peatlands with continuous drainage, we adopt a conceptual approach that considers short-term C capture (GHG exchange between the atmosphere and the peatland ecosystem) and long-term C sequestration in peat. The primary criterion of our conceptual model is the capacity of restoration measures to capture C and reduce GHG emissions. Our findings indicate that carbon dioxide (CO2) is the most influential part of long-term climate impact of restored peatlands, whereas moderate methane (CH4) emissions and low N2O fluxes are relatively unimportant. However, lateral losses of dissolved and particulate C in water can account up to a half of the total C stock change. Among the restored peatland types, Sphagnum paludiculture showed the highest CO2 capture, followed by shallow lakes and reed/grass paludiculture. Shallow lakeshore vegetation in restored peatlands can reduce CO2 emissions and sequester C but still emit CH4, particularly during the first 20 years after restoration. Our conceptual modelling approach reveals that over a 300-year period, under stable climate conditions, drained bog forests can lose up to 50% of initial C content. In managed (regularly harvested) and continuously drained peatland forests, C accumulation in biomass and litter input does not compensate C losses from peat. In contrast, rewetted unmanaged peatland forests are turning into a persistent C sink. The modelling results emphasized the importance of long-term C balance analysis which considers soil C accumulation, moving beyond the short-term C cycling between vegetation and the atmosphere. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-023-01103-1.

5.
Sci Total Environ ; 918: 170641, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325442

RESUMO

Coastal ecosystems, facing threats from global change and human activities like excessive nutrients, undergo alterations impacting their function and appearance. This study explores the intertwined microbial cycles of carbon (C) and nitrogen (N), encompassing methane (CH4), nitrous oxide (N2O), and nitrogen gas (N2) fluxes, to determine nutrient transformation processes between the soil-plant-atmosphere continuum in the coastal ecosystems with brackish water. Water salinity negatively impacted denitrification, bacterial nitrification, N fixation, and n-DAMO processes, but did not significantly affect archaeal nitrification, COMAMMOX, DNRA, and ANAMMOX processes in the N cycle. Plant species age and biomass influenced CH4 and N2O emissions. The highest CH4 emissions were from old Spartina and mixed Spartina and Scirpus sites, while Phragmites sites emitted the most N2O. Nitrification and incomplete denitrification mainly governed N2O emissions depending on the environmental conditions and plants. The higher genetic potential of ANAMMOX reduced excessive N by converting it to N2 in the sites with higher average temperatures. The presence of plants led to a decrease in the N fixers' abundance. Plant biomass negatively affected methanogenetic mcrA genes. Microbes involved in n-DAMO processes helped mitigate CH4 emissions. Over 93 % of the total climate forcing came from CH4 emissions, except for the Chinese bare site where the climate forcing was negative, and for Phragmites sites, where almost 60 % of the climate forcing came from N2O emissions. Our findings indicate that nutrient cycles, CH4, and N2O fluxes in soils are context-dependent and influenced by environmental factors and vegetation. This underscores the need for empirical analysis of both C and N cycles at various levels (soil-plant-atmosphere) to understand how habitats or plants affect nutrient cycles and greenhouse gas emissions.


Assuntos
Solo , Áreas Alagadas , Humanos , Ecossistema , Dióxido de Carbono/análise , Óxido Nitroso/análise , Poaceae , Nitrogênio/análise , Plantas , Metano/análise
6.
Biogeochemistry ; 167(4): 609-629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707517

RESUMO

Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes. Our understanding of this complexity and its multi-factorial controls in rewetted peatlands is limited. Here, we summarize the research regarding the role of soil microbial communities and functions in driving carbon and nutrient cycling in rewetted peatlands including the use of molecular biology techniques in understanding biogeochemical processes linked to greenhouse gas fluxes. We emphasize that rapidly advancing molecular biology approaches, such as high-throughput sequencing, are powerful tools helping to elucidate the dynamics of key biogeochemical processes when combined with isotope tracing and greenhouse gas measuring techniques. Insights gained from the gathered studies can help inform efficient monitoring practices for rewetted peatlands and the development of climate-smart restoration and management strategies. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-024-01122-6.

7.
Sci Adv ; 9(48): eadj8016, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019923

RESUMO

How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.


Assuntos
Ecossistema , Solo , Humanos , Fungos/genética , Filogenia , Microbiologia do Solo , Biodiversidade
8.
Microorganisms ; 10(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36296257

RESUMO

Inorganic mercury (Hg) can be methylated to the highly toxic and bioavailable methylmercury (MeHg) by microorganisms in anaerobic environments. The Hg methylation rate may be affected by forest management activities, which can influence the catchment soils, water, and sediments. Here, we investigate the influence of forest management in the form of ditch cleaning and beaver dam removal, as well as the seasonal variations, on sediment chemistry and microbiota. The relationships between MeHg concentrations in sediment samples and archaeal and bacterial communities assessed by 16S rRNA gene amplicon sequencing were investigated to determine the microbial conditions that facilitated the formation of MeHg. Concentrations of MeHg were highest in undisturbed catchments compared to disturbed or slightly disturbed sites. The undisturbed sites also had the highest microbial diversity, which may have facilitated the formation of MeHg. Low MeHg concentrations and microbial diversity were observed in disturbed sites, which may be due to the removal of organic sediment layers during ditch cleaning and beaver dam removal, resulting in more homogenous, mineral-rich environments with less microbial activity. MeHg concentrations were higher in summer and autumn compared to winter and spring, but the temporal variation in the composition and diversity of the microbial community was less than the spatial variation between sites. Beta diversity was more affected by the environment than alpha diversity. The MeHg concentrations in the sediment were positively correlated to several taxa, including Cyanobacteria, Proteobacteria, Desulfobacterota, Chloroflexi, and Bacteroidota, which could represent either Hg-methylating microbes or the growth substrates of Hg-methylating microbes.

9.
Environ Pollut ; 300: 118999, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35176412

RESUMO

Soil acidification has negative impacts on grass biomass production and the potential of grasslands to mitigate greenhouse gas (GHG) emissions. Through a global review of research on liming of grasslands, the objective of this paper was to assess the impacts of liming on soil pH, grass biomass production and total net GHG exchange (nitrous oxide (N2O), methane (CH4) and net carbon dioxide (CO2)). We collected 57 studies carried out at 88 sites and covering different countries and climatic zones. All of the studies examined showed that liming either reduced or had no effects on the emissions of two potent greenhouse gases (N2O and CH4). Though liming of grasslands can increase net CO2 emissions, the impact on total net GHG emission is minimal due to the higher global warming potential, over a 100-year period, of N2O and CH4 compared to that of CO2. Liming grassland delivers many potential advantages, which justify its wider adoption. It significantly ameliorates soil acidity, increases grass productivity, reduces fertiliser requirement and increases species richness. To realise the maximum benefit of liming grassland, we suggest that acidic soils should be moderately limed within the context of specific climates, soils and management.


Assuntos
Gases de Efeito Estufa , Biomassa , Dióxido de Carbono/análise , Pradaria , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Solo
10.
Sci Total Environ ; 809: 151723, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34801507

RESUMO

The carbon (C) budgets of riparian forests are sensitive to climatic variability. Therefore, riparian forests are hot spots of C cycling in landscapes. Only a limited number of studies on continuous measurements of methane (CH4) fluxes from riparian forests is available. Here, we report continuous high-frequency soil and ecosystem (eddy-covariance; EC) measurements of CH4 fluxes with a quantum cascade laser absorption spectrometer for a 2.5-year period and measurements of CH4 fluxes from tree stems using manual chambers for a 1.5 year period from a temperate riparian Alnus incana forest. The results demonstrate that the riparian forest is a minor net annual sink of CH4 consuming 0.24 kg CH4-C ha-1 y-1. Soil water content is the most important determinant of soil, stem, and EC fluxes, followed by soil temperature. There were significant differences in CH4 fluxes between the wet and dry periods. During the wet period, 83% of CH4 was emitted from the tree stems while the ecosystem-level emission was equal to the sum of soil and stem emissions. During the dry period, CH4 was substantially consumed in the soil whereas stem emissions were very low. A significant difference between the EC fluxes and the sum of soil and stem fluxes during the dry period is most likely caused by emission from the canopy whereas at the ecosystem level the forest was a clear CH4 sink. Our results together with past measurements of CH4 fluxes in other riparian forests suggest that temperate riparian forests can be long-term CH4 sinks.


Assuntos
Ecossistema , Árvores , Dióxido de Carbono/análise , Florestas , Metano , Solo
11.
Nat Commun ; 13(1): 1430, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301304

RESUMO

Wetland soils are the greatest source of nitrous oxide (N2O), a critical greenhouse gas and ozone depleter released by microbes. Yet, microbial players and processes underlying the N2O emissions from wetland soils are poorly understood. Using in situ N2O measurements and by determining the structure and potential functional of microbial communities in 645 wetland soil samples globally, we examined the potential role of archaea, bacteria, and fungi in nitrogen (N) cycling and N2O emissions. We show that N2O emissions are higher in drained and warm wetland soils, and are correlated with functional diversity of microbes. We further provide evidence that despite their much lower abundance compared to bacteria, nitrifying archaeal abundance is a key factor explaining N2O emissions from wetland soils globally. Our data suggest that ongoing global warming and intensifying environmental change may boost archaeal nitrifiers, collectively transforming wetland soils to a greater source of N2O.


Assuntos
Gases de Efeito Estufa , Microbiota , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Solo/química , Microbiologia do Solo , Áreas Alagadas
12.
Sci Total Environ ; 757: 143824, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33250240

RESUMO

This global systematic analysis and review investigate the impacts of previous land use system, climate zone, forest type and forest age on soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) stock, soil bulk density (BD) and pH at soil layers 0-20, 20-60 and 60-100 cm, following afforestation. Data came from 91 publications on SOC, TN and TP stock changes, covering different countries and climate zones. Overall, afforestation significantly increased SOC by 46%, 52% and 20% at 0-20, 20-60 and 60-100 cm depths, respectively. It also significantly increased shallower TN stocks by 28% and 22% at 0-20 and 20-60 cm depths, respectively, but had no overall impacts on TP. Previous land use system had the largest influence on SOC, TN and TP stock changes, with greater accumulations on barren land compared to cropland and grassland. Climate zone influenced SOC, TN and TP stock changes, with greater accumulations for moist cool than other climate zones. Broadleaf forests were better than coniferous forests for increasing SOC, TN and TP stocks of the investigated soil profile (0-100 cm). Afforestation for <20 years accumulated SOC and TN stocks only at the soil surface (0-20 cm), whilst afforestation for >20 years accumulated SOC and TN stocks to 100 cm soil depth. Changes to SOC and TN were positively correlated at depths down to 100 cm under all age groups, demonstrating that an increase TN could offset progressive N limitation, and maintains SOC accumulation as forests age. TP stock decreased significantly in topsoil (0-20 cm) for <20-year-old forest and did not change for >20-year-old forest, suggesting that it may become a limiting factor for carbon sequestration as forests age. Following afforestation, soil BD decreased alongside significant increases in SOC and TN stocks to 100 cm depth, but had no relationship with TP.

13.
Sci Total Environ ; 779: 146614, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030255

RESUMO

Constructed wetlands (CW) can efficiently remove nitrogen from polluted agricultural run-off, however, a potential caveat is nitrous oxide (N2O), a harmful greenhouse gas and stratospheric ozone depleter. During five sampling campaigns, we measured N2O fluxes from a 0.53 ha off-stream CW treating nitrate-rich water from the intensively fertilized watershed in Rampillon, France, using automated chambers with a quantum cascade laser system, and manual chambers. Sediment samples were analysed for potential N2 flux using the HeO2 incubation method. Both inlet nitrate (NO3-) concentrations and N2O emission varied significantly between the seasons. In the Autumn and Winter inlet concentrations were about 11 mg NO3--N L-1, and < 6.5 mg NO3--N L-1 in the Spring and Summer. N2O emission was highest in the Autumn (mean ± standard error: 9.7 ± 0.2 µg N m-2 h-1) and lowest in the Summer (wet period: 0.2 ± 0.3 µg N m-2 h-1). The CW was a very weak source of N2O emitting 0.32 kg N2O-N ha-1 yr-1 and removing around 938 kg NO3--N ha-1 yr-1, the ratio of N2O-N emitted to NO3--N removed was 0.033%. The automated and manual chambers gave similar results. From the potential N2O formation in the sediment, only 9% was emitted to the atmosphere, the average N2 N 2O ratio was high: 89:1 for N2-Npotential: N2O-Npotential and 1353:1 for N2-Npotential: N2O-Nemitted. These results indicate complete denitrification. The focused principal component analysis showed strong positive correlation between the gaseous N2O fluxes and the following environmental factors: NO3--N concentrations in inlet water, streamflow, and nitrate reduction rate. Water temperature, TOC and DOC in the water and hydraulic residence time showed negative correlations with N2O emissions. Shallow off-stream CWs such as Rampillon may have good nitrate removal capacity with low N2O emissions.

14.
Front Microbiol ; 11: 591358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343531

RESUMO

Peatlands are unique wetland ecosystems that cover approximately 3% of the world's land area and are mostly located in boreal and temperate regions. Around 15 Mha of these peatlands have been drained for forestry during the last century. This study investigated soil archaeal and bacterial community structure and abundance, as well as the abundance of marker genes of nitrogen transformation processes (nitrogen fixation, nitrification, denitrification, and dissimilatory nitrate reduction to ammonia) across distance gradients from drainage ditches in nine full-drained, middle-aged peatland forests dominated by Scots pine, Norway spruce, or Downy birch. The dominating tree species had a strong effect on the chemical properties (pH, N and C/N status) of initially similar Histosols and affected the bacterial and archaeal community structure and abundance of microbial groups involved in the soil nitrogen cycle. The pine forests were distinguished by having the lowest fine root biomass of trees, pH, and N content and the highest potential for N fixation. The distance from drainage ditches affected the spatial distribution of bacterial and archaeal communities (especially N-fixers, nitrifiers, and denitrifiers possessing nosZ clade II), but this effect was often dependent on the conditions created by the dominance of certain tree species. The composition of the nitrifying microbial community was dependent on the soil pH, and comammox bacteria contributed significantly to nitrate formation in the birch and spruce soils where the pH was higher than 4.6. The highest N2O emission was recorded from soils with higher bacterial and archaeal phylogenetic diversity such as birch forest soils. This study demonstrates that the long-term growth of forests dominated by birch, pine, and spruce on initially similar organic soil has resulted in tree-species-specific changes in the soil properties and the development of forest-type-specific soil prokaryotic communities with characteristic functional properties and relationships within microbial communities.

15.
Sci Rep ; 10(1): 3204, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081925

RESUMO

One of the characteristics of global climate change is the increase in extreme climate events, e.g., droughts and floods. Forest adaptation strategies to extreme climate events are the key to predict ecosystem responses to global change. Severe floods alter the hydrological regime of an ecosystem which influences biochemical processes that control greenhouse gas fluxes. We conducted a flooding experiment in a mature grey alder (Alnus incana (L.) Moench) forest to understand flux dynamics in the soil-tree-atmosphere continuum related to ecosystem N2O and CH4 turn-over. The gas exchange was determined at adjacent soil-tree-pairs: stem fluxes were measured in vertical profiles using manual static chambers and gas chromatography; soil fluxes were measured with automated chambers connected to a gas analyser. The tree stems and soil surface were net sources of N2O and CH4 during the flooding. Contrary to N2O, the increase in CH4 fluxes delayed in response to flooding. Stem N2O fluxes were lower although stem CH4 emissions were significantly higher than from soil after the flooding. Stem fluxes decreased with stem height. Our flooding experiment indicated soil water and nitrogen content as the main controlling factors of stem and soil N2O fluxes. The stems contributed up to 88% of CH4 emissions to the stem-soil continuum during the investigated period but soil N2O fluxes dominated (up to 16 times the stem fluxes) during all periods. Conclusively, stem fluxes of CH4 and N2O are essential elements in forest carbon and nitrogen cycles and must be included in relevant models.

16.
Sci Rep ; 8(1): 4742, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549345

RESUMO

Tropical peatlands, which play a crucial role in the maintenance of different ecosystem services, are increasingly drained for agriculture, forestry, peat extraction and human settlement purposes. The present study investigated the differences between natural and drained sites of a tropical peatland in the community structure of soil bacteria and archaea and their potential to perform nitrogen transformation processes. The results indicate significant dissimilarities in the structure of soil bacterial and archaeal communities as well as nirK, nirS, nosZ, nifH and archaeal amoA gene-possessing microbial communities. The reduced denitrification and N2-fixing potential was detected in the drained tropical peatland soil. In undisturbed peatland soil, the N2O emission was primarily related to nirS-type denitrifiers and dissimilatory nitrate reduction to ammonium, while the conversion of N2O to N2 was controlled by microbes possessing nosZ clade I genes. The denitrifying microbial community of the drained site differed significantly from the natural site community. The main reducers of N2O were microbes harbouring nosZ clade II genes in the drained site. Additionally, the importance of DNRA process as one of the controlling mechanisms of N2O fluxes in the natural peatlands of the tropics revealed from the results of the study.


Assuntos
Bactérias/classificação , Genes Bacterianos , Ciclo do Nitrogênio , Nitrogênio/análise , Óxido Nitroso/análise , Solo/química , Clima Tropical , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Genes Arqueais , Filogenia , Microbiologia do Solo , Áreas Alagadas
17.
Ecol Evol ; 8(12): 6157-6168, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29988438

RESUMO

The pollution of agricultural soils by the heavy metals affects the productivity of the land and has an impact on the quality of the surrounding ecosystems. This study investigated the bacterial community structure in the heavy metal contaminated sites along a smelter and a distantly located paddy field to elucidate the factors that are related to the alterations of the bacterial communities under the conditions of heavy metal pollution. Among the study sites, the bacterial communities in the soil did not show any significant differences in their richness and diversity. The soil bacterial communities at the three study sites were distinct from one another at each site, possessing a distinct set of bacterial phylotypes. Among the study sites, significant changes were observed in the abundances of the bacterial phyla and genera. The variations in the bacterial community structure were mostly related to the general soil properties at the phylum level, while at the finer taxonomic levels, the concentrations of arsenic (As) and lead (Pb) were the significant factors, affecting the community structure. The relative abundances of the genera Desulfatibacillum and Desulfovirga were negatively correlated to the concentrations of As, Pb, and cadmium (Cd) in the soil, while the genus Bacillus was positively correlated to the concentrations of As and Cd. According to the results of the prediction of bacterial community functions, the soil bacterial communities of the heavy metal polluted sites were characterized by the more abundant enzymes involved in DNA replication and repair, translation, transcription, and the nucleotide metabolism pathways, while the amino acid and lipid metabolism, as well as the biodegradation potential of xenobiotics, were reduced. Our results showed that the adaptation of the bacterial communities to the heavy metal contamination was predominantly attributed to the replacement process, while the changes in community richness were linked to the variations in the soil pH values.

18.
Nat Commun ; 9(1): 1748, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700326

RESUMO

The original version of this Article contained an error in the first sentence of the Acknowledgements section, which incorrectly referred to the Estonian Research Council grant identifier as "PUTJD618". The correct version replaces the grant identifier with "PUTJD619". This has been corrected in both the PDF and HTML versions of the Article.

19.
Nat Commun ; 9(1): 1135, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29555906

RESUMO

Nitrous oxide (N2O) is a powerful greenhouse gas and the main driver of stratospheric ozone depletion. Since soils are the largest source of N2O, predicting soil response to changes in climate or land use is central to understanding and managing N2O. Here we find that N2O flux can be predicted by models incorporating soil nitrate concentration (NO3-), water content and temperature using a global field survey of N2O emissions and potential driving factors across a wide range of organic soils. N2O emissions increase with NO3- and follow a bell-shaped distribution with water content. Combining the two functions explains 72% of N2O emission from all organic soils. Above 5 mg NO3--N kg-1, either draining wet soils or irrigating well-drained soils increases N2O emission by orders of magnitude. As soil temperature together with NO3- explains 69% of N2O emission, tropical wetlands should be a priority for N2O management.

20.
Ecol Evol ; 6(19): 7080-7102, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725384

RESUMO

Northern peatlands constitute a significant source of atmospheric methane (CH 4). However, management of undisturbed peatlands, as well as the restoration of disturbed peatlands, will alter the exchange of CH 4 with the atmosphere. The aim of this systematic review and meta-analysis was to collate and analyze published studies to improve our understanding of the factors that control CH 4 emissions and the impacts of management on the gas flux from northern (latitude 40° to 70°N) peatlands. The analysis includes a total of 87 studies reporting measurements of CH 4 emissions taken at 186 sites covering different countries, peatland types, and management systems. Results show that CH 4 emissions from natural northern peatlands are highly variable with a 95% CI of 7.6-15.7 g C m-2 year-1 for the mean and 3.3-6.3 g C m-2 year-1 for the median. The overall annual average (mean ± SD) is 12 ± 21 g C m-2 year-1 with the highest emissions from fen ecosystems. Methane emissions from natural peatlands are mainly controlled by water table (WT) depth, plant community composition, and soil pH. Although mean annual air temperature is not a good predictor of CH 4 emissions by itself, the interaction between temperature, plant community cover, WT depth, and soil pH is important. According to short-term forecasts of climate change, these complex interactions will be the main determinant of CH 4 emissions from northern peatlands. Drainage significantly (p < .05) reduces CH 4 emissions to the atmosphere, on average by 84%. Restoration of drained peatlands by rewetting or vegetation/rewetting increases CH 4 emissions on average by 46% compared to the original premanagement CH 4 fluxes. However, to fully evaluate the net effect of management practice on the greenhouse gas balance from high latitude peatlands, both net ecosystem exchange (NEE) and carbon exports need to be considered.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa