RESUMO
Readiness level (RL) frameworks such as technology readiness levels and manufacturing readiness levels describe the status of a technology/manufacturing process on its journey from initial conception to commercial deployment. More importantly, they provide a roadmap to guide technology development and scale-up from a ''totality of system'' approach. Commercialization risks associated with too narrowly focused R&D efforts are mitigated. RLs are defined abstractly so that they can apply to diverse industries and technology sectors. However, differences between technology sectors make necessary the definition of sector specific RL frameworks. Here, we describe bioindustrial manufacturing readiness levels (BioMRLs), a classification system specific to bioindustrial manufacturing. BioMRLs will give program managers, investors, scientists, and engineers a shared vocabulary for prioritizing goals and assessing risks in the development and commercialization of a bioindustrial manufacturing process.
Assuntos
Indústrias , TecnologiaRESUMO
Modern agriculture demands crops carrying multiple traits. The current paradigm of randomly integrating and sorting independently segregating transgenes creates severe downstream breeding challenges. A versatile, generally applicable solution is hereby provided: the combination of high-efficiency targeted genome editing driven by engineered zinc finger nucleases (ZFNs) with modular 'trait landing pads' (TLPs) that allow 'mix-and-match', on-demand transgene integration and trait stacking in crop plants. We illustrate the utility of nuclease-driven TLP technology by applying it to the stacking of herbicide resistance traits. We first integrated into the maize genome an herbicide resistance gene, pat, flanked with a TLP (ZFN target sites and sequences homologous to incoming DNA) using WHISKERS™-mediated transformation of embryogenic suspension cultures. We established a method for targeted transgene integration based on microparticle bombardment of immature embryos and used it to deliver a second trait precisely into the TLP via cotransformation with a donor DNA containing a second herbicide resistance gene, aad1, flanked by sequences homologous to the integrated TLP along with a corresponding ZFN expression construct. Remarkably, up to 5% of the embryo-derived transgenic events integrated the aad1 transgene precisely at the TLP, that is, directly adjacent to the pat transgene. Importantly and consistent with the juxtaposition achieved via nuclease-driven TLP technology, both herbicide resistance traits cosegregated in subsequent generations, thereby demonstrating linkage of the two independently transformed transgenes. Because ZFN-mediated targeted transgene integration is becoming applicable across an increasing number of crop species, this work exemplifies a simple, facile and rapid approach to trait stacking.
Assuntos
Endonucleases/genética , Marcação de Genes/métodos , Genoma de Planta/genética , Resistência a Herbicidas , Herbicidas/farmacologia , Zea mays/genética , Produtos Agrícolas , Endonucleases/metabolismo , Ligação Genética , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transgenes , Dedos de ZincoRESUMO
Western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is a major corn pest in the United States, causing annual losses of over $1 billion. One approach to protect against crop loss by this insect is the use of transgenic corn hybrids expressing one or more crystal (Cry) proteins derived from Bacillus thuringiensis. Cry34Ab1 and Cry35Ab1 together comprise a binary insecticidal toxin with specific activity against WCR. These proteins have been developed as insect resistance traits in commercialized corn hybrids resistant to WCR feeding damage. Cry34/35Ab1 is a pore forming toxin, but the specific effects of Cry34/35Ab1 on WCR cells and tissues have not been well characterized microscopically, and the overall histopathology is poorly understood. Using high-resolution resin-based histopathology methods, the effects of Cry34/35Ab1 as well as Cry3Aa1, Cry6Aa1, and the Photorhabdus toxin complex protein TcdA have been directly visualized and documented. Clear symptoms of intoxication were observed for all insecticidal proteins tested, including swelling and sloughing of enterocytes, constriction of midgut circular muscles, stem cell activation, and obstruction of the midgut lumen. These data demonstrate the effects of these insecticidal proteins on WCR midgut cells, and the collective response of the midgut to intoxication. Taken together, these results advance our understanding of the insect cell biology and pathology of these insecticidal proteins, which should further the field of insect resistance traits and corn rootworm management.
Assuntos
Bacillus thuringiensis , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Animais , Besouros , Larva , Controle Biológico de VetoresRESUMO
Maize (Zea mays) is a widely cultivated cereal that has been safely consumed by humans and animals for centuries. Transgenic or genetically engineered insect-resistant and herbicide-tolerant maize, are commercially grown on a broad scale. Event TC1507 (OECD unique identifier: DAS-Ø15Ø7-1) or the Herculex®(#) I trait, an insect-resistant and herbicide-tolerant maize expressing Cry1F and PAT proteins, has been registered for commercial cultivation in the US since 2001. A science-based safety assessment was conducted on TC1507 prior to commercialization. The safety assessment addressed allergenicity; acute oral toxicity; subchronic toxicity; substantial equivalence with conventional comparators, as well as environmental impact. Results from biochemical, physicochemical, and in silico investigations supported the conclusion that Cry1F and PAT proteins are unlikely to be either allergenic or toxic to humans. Also, findings from toxicological and animal feeding studies supported that maize with TC1507 is as safe and nutritious as conventional maize. Maize with TC1507 is not expected to behave differently than conventional maize in terms of its potential for invasiveness, gene flow to wild and weedy relatives, or impact on non-target organisms. These safety conclusions regarding TC1507 were acknowledged by over 20 regulatory agencies including United States Environment Protection Agency (US EPA), US Department of Agriculture (USDA), Canadian Food Inspection Agency (CFIA), and European Food Safety Authority (EFSA) before authorizing cultivation and/or food and feed uses. A comprehensive review of the safety studies on TC1507, as well as some benefits, are presented here to serve as a reference for regulatory agencies and decision makers in other countries where authorization of TC1507 is or will be pursued.
Assuntos
Plantas Geneticamente Modificadas/efeitos adversos , Zea mays/genética , Ração Animal/efeitos adversos , Animais , Qualidade de Produtos para o Consumidor , Inocuidade dos Alimentos , Humanos , Medição de Risco , Estados UnidosRESUMO
Bacillus thuringiensis strains are well known for the production of insecticidal proteins upon sporulation and these proteins are deposited in parasporal crystalline inclusions. The majority of these insect-specific toxins exhibit three domains in the mature toxin sequence. However, other Cry toxins are structurally and evolutionarily unrelated to this three-domain family and little is known of their three dimensional structures, limiting our understanding of their mechanisms of action and our ability to engineer the proteins to enhance their function. Among the non-three domain Cry toxins, the Cry34Ab1 and Cry35Ab1 proteins from B. thuringiensis strain PS149B1 are required to act together to produce toxicity to the western corn rootworm (WCR) Diabrotica virgifera virgifera Le Conte via a pore forming mechanism of action. Cry34Ab1 is a protein of â¼14 kDa with features of the aegerolysin family (Pfam06355) of proteins that have known membrane disrupting activity, while Cry35Ab1 is a â¼44 kDa member of the toxin_10 family (Pfam05431) that includes other insecticidal proteins such as the binary toxin BinA/BinB. The Cry34Ab1/Cry35Ab1 proteins represent an important seed trait technology having been developed as insect resistance traits in commercialized corn hybrids for control of WCR. The structures of Cry34Ab1 and Cry35Ab1 have been elucidated to 2.15 Å and 1.80 Å resolution, respectively. The solution structures of the toxins were further studied by small angle X-ray scattering and native electrospray ion mobility mass spectrometry. We present here the first published structure from the aegerolysin protein domain family and the structural comparisons of Cry34Ab1 and Cry35Ab1 with other pore forming toxins.