Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Phys Rev Lett ; 124(8): 084802, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167312

RESUMO

Acceleration of particles from the interaction of ultraintense laser pulses up to 5×10^{21} W cm^{-2} with thin foils is investigated experimentally. The electron beam parameters varied with decreasing spot size, not just laser intensity, resulting in reduced temperatures and divergence. In particular, the temperature saturated due to insufficient acceleration length in the tightly focused spot. These dependencies affected the sheath-accelerated protons, which showed poorer spot-size scaling than widely used scaling laws. It is therefore shown that maximizing laser intensity by using very small foci has reducing returns for some applications.

2.
J Synchrotron Radiat ; 24(Pt 1): 196-204, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009559

RESUMO

Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

3.
Opt Express ; 25(3): 1958-1972, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519045

RESUMO

By analyzing profiles of experimental x-ray spectral lines of Si XIV and Al XIII, we found that both Langmuir and ion acoustic waves developed in plasmas produced via irradiation of thin Si foils by relativistic laser pulses (intensities ~1021 W/cm2). We prove that these waves are due to the parametric decay instability (PDI). This is the first time that the PDI-induced ion acoustic turbulence was discovered by the x-ray spectroscopy in laser-produced plasmas. These conclusions are also supported by PIC simulations. Our results can be used for laboratory modeling of physical processes in astrophysical objects and a better understanding of intense laser-plasma interactions.

4.
J Microsc ; 258(2): 127-39, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25639642

RESUMO

In this paper, the use of lithium fluoride (LiF) as imaging radiation detector to analyse living cells by single-shot soft X-ray contact microscopy is presented. High resolved X-ray images on LiF of cyanobacterium Leptolyngbya VRUC135, two unicellular microalgae of the genus Chlamydomonas and mouse macrophage cells (line RAW 264.7) have been obtained utilizing X-ray radiation in the water window energy range from a laser plasma source. The used method is based on loading of the samples, the cell suspension, in a special holder where they are in close contact with a LiF crystal solid-state X-ray imaging detector. After exposure and sample removal, the images stored in LiF by the soft X-ray contact microscopy technique are read by an optical microscope in fluorescence mode. The clear image of the mucilaginous sheath the structure of the filamentous Leptolyngbya and the visible nucleolus in the macrophage cells image, are noteworthiness results. The peculiarities of the used X-ray radiation and of the LiF imaging detector allow obtaining images in absorption contrast revealing the internal structures of the investigated samples at high spatial resolution. Moreover, the wide dynamic range of the LiF imaging detector contributes to obtain high-quality images. In particular, we demonstrate that this peculiar characteristic of LiF detector allows enhancing the contrast and reveal details even when they were obscured by a nonuniform stray light.


Assuntos
Fluoretos , Compostos de Lítio , Microscopia/métodos , Animais , Chlamydomonas/ultraestrutura , Cianobactérias/ultraestrutura , Lasers , Macrófagos/ultraestrutura , Camundongos , Células RAW 264.7 , Raios X
5.
Opt Express ; 21(18): 20656-74, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24103939

RESUMO

A detailed mathematical model is presented for a submicron-sized cluster formation in a binary gas mixture flowing through a three-staged conical nozzle. By measuring the angular distribution of light scattered from the clusters, the size of CO(2) clusters, produced in a supersonic expansion of the mixture gas of CO(2)(30%)/H(2)(70%) or CO(2)(10%)/He(90%), has been evaluated using the Mie scattering method. The mean sizes of CO(2) clusters are estimated to be 0.28 ± 0.03 µm for CO(2)/H(2) and 0.26 ± 0.04 µm for CO(2)/He, respectively. In addition, total gas density profiles in radial direction of the gas jet, measuring the phase shift of the light passing through the target by utilizing an interferometer, are found to be agreed with the numerical modeling within a factor of two. The dryness (= monomer/(monomer + cluster) ratio) in the targets is found to support the numerical modeling. The apparatus developed to evaluate the cluster-gas targets proved that our mathematical model of cluster formation is reliable enough for the binary gas mixture.

6.
Phys Rev Lett ; 110(12): 125001, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166812

RESUMO

In high-spectral resolution experiments with the petawatt Vulcan laser, strong x-ray radiation of KK hollow atoms (atoms without n = 1 electrons) from thin Al foils was observed at pulse intensities of 3 × 10(20) W/cm(2). The observations of spectra from these exotic states of matter are supported by detailed kinetics calculations, and are consistent with a picture in which an intense polychromatic x-ray field, formed from Thomson scattering and bremsstrahlung in the electrostatic fields at the target surface, drives the KK hollow atom production. We estimate that this x-ray field has an intensity of >5 × 10(18) W/cm(2) and is in the 3 keV range.

7.
Phys Rev Lett ; 108(13): 135004, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540709

RESUMO

We demonstrate a new high-order harmonic generation mechanism reaching the "water window" spectral region in experiments with multiterawatt femtosecond lasers irradiating gas jets. A few hundred harmonic orders are resolved, giving µJ/sr pulses. Harmonics are collectively emitted by an oscillating electron spike formed at the joint of the boundaries of a cavity and bow wave created by a relativistically self-focusing laser in underdense plasma. The spike sharpness and stability are explained by catastrophe theory. The mechanism is corroborated by particle-in-cell simulations.

8.
Phys Rev Lett ; 106(13): 134801, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21517389

RESUMO

We report on the first generation of 5.5-7.5 MeV protons by a moderate-intensity short-pulse laser (∼5×10(17) W/cm(2), 40 fsec) interacting with frozen H(2)O nanometer-size structure droplets (snow nanowires) deposited on a sapphire substrate. In this setup, the laser intensity is locally enhanced by the snow nanowire, leading to high spatial gradients. Accordingly, the nanoplasma is subject to enhanced ponderomotive potential, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced over the short scale length, and protons are accelerated to MeV-level energies.

9.
Phys Rev E ; 101(4-1): 043208, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422777

RESUMO

The formation of high energy density matter occurs in inertial confinement fusion, astrophysical, and geophysical systems. In this context, it is important to couple as much energy as possible into a target while maintaining high density. A recent experimental campaign, using buried layer (or "sandwich" type) targets and the ultrahigh laser contrast Vulcan petawatt laser facility, resulted in 500 Mbar pressures in solid density plasmas (which corresponds to about 4.6×10^{7}J/cm^{3} energy density). The densities and temperatures of the generated plasma were measured based on the analysis of x-ray spectral line profiles and relative intensities.

10.
Opt Lett ; 34(21): 3268-70, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19881563

RESUMO

Polychromatic soft x-ray plasma sources were not previously considered to be among the sources suitable for the propagation based phase contrast imaging because of their comparatively large emission-zone size. In the current work a scheme based on the combination of soft x-ray emission of multicharged ions, generated by the interaction of femtosecond laser pulses with an ultrasonic jet of gas clusters, and an LiF crystal detector was used to obtain phase-enhanced high-resolution images of micro- and nanoscale objects in a wide field of view.

11.
Phys Rev Lett ; 103(23): 235003, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-20366154

RESUMO

Laser light reflection by a relativistically moving electron density modulation (flying mirror) in a wake wave generated in a plasma by a high intensity laser pulse is investigated experimentally. A counterpropagating laser pulse is reflected and upshifted in frequency with a multiplication factor of 37-66, corresponding to the extreme ultraviolet wavelength. The demonstrated flying mirror reflectivity (from 3 x 10(-6) to 2 x 10(-5), and from 1.3 x 10(-4) to 0.6 x 10(-3), for the photon number and pulse energy, respectively) is close to the theoretical estimate for the parameters of the experiment.

12.
Phys Rev Lett ; 103(19): 194803, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365929

RESUMO

A high stability electron bunch is generated by laser wakefield acceleration with the help of a colliding laser pulse. The wakefield is generated by a laser pulse; the second laser pulse collides with the first pulse at 180 degrees and at 135 degrees realizing optical injection of an electron bunch. The electron bunch has high stability and high reproducibility compared with single pulse electron generation. In the case of 180 degrees collision, special measures have been taken to prevent damage. In the case of 135 degrees collision, since the second pulse is countercrossing, it cannot damage the laser system.

13.
Phys Rev Lett ; 103(16): 165002, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19905702

RESUMO

An approach for accelerating ions, with the use of a cluster-gas target and an ultrashort pulse laser of 150-mJ energy and 40-fs duration, is presented. Ions with energy 10-20 MeV per nucleon having a small divergence (full angle) of 3.4 degrees are generated in the forward direction, corresponding to approximately tenfold increase in the ion energies compared to previous experiments using solid targets. It is inferred from a particle-in-cell simulation that the high energy ions are generated at the rear side of the target due to the formation of a strong dipole vortex structure in subcritical density plasmas.

14.
Phys Rev E ; 100(2-1): 021201, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574771

RESUMO

We describe a platform developed on the LULI2000 laser facility to investigate the evolution of Rayleigh-Taylor instability (RTI) in scaled conditions relevant to young supernova remnants (SNRs) up to 200 years. An RT unstable interface is imaged with a short-pulse laser-driven (PICO2000) x-ray source, providing an unprecedented simultaneous high spatial (24µm) and temporal (10 ps) resolution. This experiment provides relevant data to compare with astrophysical codes, as observational data on the development of RTI at the early stage of the SNR expansion are missing. A comparison is also performed with FLASH radiative magnetohydrodynamic simulations.

15.
Microsc Res Tech ; 71(3): 179-85, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17992692

RESUMO

This article reports on the first utilization of the soft X-ray beamline at the DaPhine synchrotron light source for mapping the intake of different elements in plant tissues. As a test, the method of dual-energy X-ray microradiography was applied to the investigation of the natural sulfur content in dried leaf and root samples. Our ultimate goal was to monitor the pollutant lead and its intake, which was added in controlled doses to the hydroponic medium of laboratory-controlled samples of vegetal species. The results obtained by the nondestructive X-ray radiographic analysis are compared to the values of concentrations determined by a standard chemical analysis utilizing atomic absorption spectroscopy. From this comparison the validity of the X-ray detection of heavy metals in biological samples has been confirmed. The superposition of the dual energy results on the simple planar radiography shows the representation of the pollutant intake directly on the sample structures. It should be pointed out that this method, developed here for plant root and leaves could be applied to any biological sample of interest, but the preparation and observation conditions necessitate different strategies according to the type of sample under analysis.


Assuntos
Chumbo/análise , Pisum sativum/química , Enxofre/análise , Zea mays/química , Iluminação , Microrradiografia , Folhas de Planta/química , Raízes de Plantas/química , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Espectrofotometria Atômica , Síncrotrons/instrumentação , Raios X
16.
J Microsc ; 229(Pt 3): 490-5, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18331500

RESUMO

In this work, we report a method to observe soft X-ray radiographs at nanoscale of various kind of samples, biological and metallic, stored in a thin layer of lithium fluoride, employing scanning near-field optical microscopy with an optical resolution that reaches 50 nm. Lithium fluoride material works as a novel image detector for X-ray nano-radiographs, due to the fact that extreme ultraviolet radiation and soft X-rays efficiently produce stable point defects emitting optically stimulated visible luminescence in a thin surface layer. The bi-dimensional distribution of the so-created defects depends on the local nanostructure of the investigated sample.


Assuntos
Fluoretos , Compostos de Lítio , Microscopia de Varredura por Sonda , Radiografia , Cristalização , Microscopia Confocal , Microscopia de Fluorescência , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Olea/ultraestrutura , Pólen/ultraestrutura , Radiografia/instrumentação , Radiografia/métodos , Raios X
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(4 Pt 2): 045402, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18517682

RESUMO

An experiment on LULI 2000 laser devoted to density determination of shocked plastic from a two-dimensional monochromatic x-ray radiography is presented. A spherical quartz crystal was set to select the He-alpha line of vanadium at 2.382 A and perform the image of the main target. Rear side diagnostics were implemented to validate the new diagnostic. The density experimental results given by radiography are in good agreement with rear side diagnostics data and hydrodynamical simulations. The pressure regime into the plastic is 2-3 Mbar, corresponding to a compression between 2.7-2.9.

18.
Rev Sci Instrum ; 79(5): 053302, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18513062

RESUMO

Reported in this article is the generation of unique polarized x-rays in the sub-MeV region by means of the Thomson backscattering of the Nd:YAG laser photon with a wavelength of 1064 nm on the 150 MeV electron from the microtron accelerator. The maximum energy of the x-ray photons is estimated to be about 400 keV. The total energy of the backscattered x-ray pulse is measured with an imaging plate and a LYSO scintillator. The angular divergence of the x-rays is also measured by using the imaging plate. We confirm that the x-ray beam is polarized according to the laser polarization direction with the Compton scattering method. In addition, we demonstrate the imaging of the object shielded by lead with the generated x-rays.

19.
Sci Rep ; 8(1): 9404, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925882

RESUMO

The use of gas cluster media as a target for an intense femtosecond laser pulses is considered to be uniquely convenient approach for the development of a compact versatile pulsed source of ionizing radiation. Also, one may consider cluster media as a nanolab to investigate fundamental issues of intense optical fields interaction with sub-wavelength scale structures. However, conventional diagnostic methods fail to register highly charged ion states from a cluster plasma because of strong recombination in the ambient gas. In the paper we introduce high-resolution X-ray spectroscopy method allowing to study energy spectra of highly charged ions created in the area of most intense laser radiation. The emission of CO2 clusters were analyzed in experiments with 60 fs 780 nm laser pulses of 1018 W/cm2 intensity. Theory and according X-ray spectra modeling allows to reveal the energy spectra and yield of highly charged oxygen ions. It was found that while the laser of fundamental frequency creates commonly expected monotonic ion energy spectrum, frequency doubled laser radiation initiates energy spectra featuring of distinctive quasi-monoenergetic peaks. The later would provide definite advantage in further development of laser-plasma based compact ion accelerators.

20.
Sci Rep ; 8(1): 16407, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401885

RESUMO

High resolution X-ray imaging is crucial for many high energy density physics (HEDP) experiments. Recently developed techniques to improve resolution have, however, come at the cost of a decreased field of view. In this paper, an innovative experimental detector for X-ray imaging in the context of HEDP experiments with high spatial resolution, as well as a large field of view, is presented. The platform is based on coupling an X-ray backligther source with a Lithium Fluoride detector, characterized by its large dynamic range. A spatial resolution of 2 µm over a field of view greater than 2 mm2 is reported. The platform was benchmarked with both an X-ray free electron laser (XFEL) and an X-ray source produced by a short pulse laser. First, using a non-coherent short pulse laser-produced backlighter, reduced penumbra blurring, as a result of the large size of the X-ray source, is shown. Secondly, we demonstrate phase contrast imaging with a fully coherent monochromatic XFEL beam. Modeling of the absorption and phase contrast transmission of X-ray radiation passing through various targets is presented.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa