Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
BMC Genomics ; 25(1): 335, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580918

RESUMO

BACKGROUND: Mammalian follicle development is characterized by extensive changes in morphology, endocrine responsiveness, and function, providing the optimum environment for oocyte growth, development, and resumption of meiosis. In cattle, the first signs of transcription activation in the oocyte are observed in the secondary follicle, later than during mouse and human oogenesis. While many studies have generated extensive datasets characterizing gene expression in bovine oocytes, they are mostly limited to the analysis of fully grown and matured oocytes. The aim of the present study was to apply single-cell RNA sequencing to interrogate the transcriptome of the growing bovine oocyte from the secondary follicle stage through to the mid-antral follicle stage. RESULTS: Single-cell RNA-seq libraries were generated from oocytes of known diameters (< 60 to > 120 µm), and datasets were binned into non-overlapping size groups for downstream analysis. Combining the results of weighted gene co-expression network and Trendy analyses, and differently expressed genes (DEGs) between size groups, we identified a decrease in oxidative phosphorylation and an increase in maternal -genes and transcription regulators across the bovine oocyte growth phase. In addition, around 5,000 genes did not change in expression, revealing a cohort of stable genes. An interesting switch in gene expression profile was noted in oocytes greater than 100 µm in diameter, when the expression of genes related to cytoplasmic activities was replaced by genes related to nuclear activities (e.g., chromosome segregation). The highest number of DEGs were detected in the comparison of oocytes 100-109 versus 110-119 µm in diameter, revealing a profound change in the molecular profile of oocytes at the end of their growth phase. CONCLUSIONS: The current study provides a unique dataset of the key genes and pathways characteristic of each stage of oocyte development, contributing an important resource for a greater understanding of bovine oogenesis.


Assuntos
Oogênese , Transcriptoma , Feminino , Bovinos , Animais , Humanos , Camundongos , Oogênese/genética , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Proliferação de Células , Mamíferos/genética
2.
Mol Hum Reprod ; 30(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870523

RESUMO

Advanced maternal age is associated with a decline in oocyte quality, which often leads to reproductive failure in humans. However, the mechanisms behind this age-related decline remain unclear. To gain insights into this phenomenon, we applied plexDIA, a multiplexed data-independent acquisition, single-cell mass spectrometry method, to analyze the proteome of oocytes from both young women and women of advanced maternal age. Our findings primarily revealed distinct proteomic profiles between immature fully grown germinal vesicle and mature metaphase II oocytes. Importantly, we further show that a woman's age is associated with changes in her oocyte proteome. Specifically, when compared to oocytes obtained from young women, advanced maternal age oocytes exhibited lower levels of the proteasome and TRiC complex, as well as other key regulators of proteostasis and meiosis. This suggests that aging adversely affects the proteostasis and meiosis networks in human oocytes. The proteins identified in this study hold potential as targets for improving oocyte quality and may guide future studies into the molecular processes underlying oocyte aging.


Assuntos
Idade Materna , Meiose , Oócitos , Proteoma , Proteômica , Proteostase , Análise de Célula Única , Humanos , Oócitos/metabolismo , Oócitos/citologia , Feminino , Meiose/fisiologia , Adulto , Proteômica/métodos , Análise de Célula Única/métodos , Proteoma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Pessoa de Meia-Idade
3.
Reprod Fertil Dev ; 36(2): 133-148, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064189

RESUMO

The ovulation of a mature oocyte at metaphase II of meiosis, with optimal potential to undergo fertilisation by a sperm cell, complete meiosis and sustain the switch to mitotic division, and support early embryo development, involves a protracted and disrupted/delayed series of processes. Many of these are targeted for exploitation in vivo , or recapitulation in vitro , by the livestock industry. Reproductive technologies, including AI, multiple ovulation embryo transfer, ovum pick-up, in vitro embryo production, and oestrus and ovulation synchronisation, offer practitioners and producers the opportunity to produce offspring from genetically valuable dams in much greater numbers than they would normally have in their lifetime, while in vitro oocyte and follicle culture are important platforms for researchers to interrogate the physiological mechanisms driving fertility. The majority of these technologies target the ovarian follicle and the oocyte within; thus, the quality and capability of the recovered oocyte determine the success of the reproductive intervention. Molecular and microscopical technologies have grown exponentially, providing powerful platforms to interrogate the molecular mechanisms which are integral to or affected by ART. The development of the bovine oocyte from its differentiation in the ovary to ovulation is described in the light of its relevance to key aspects of individual interventions, while highlighting the historical timeline.


Assuntos
Oócitos , Sêmen , Masculino , Feminino , Animais , Bovinos , Folículo Ovariano/fisiologia , Oogênese/fisiologia , Técnicas de Reprodução Assistida/veterinária
4.
Reproduction ; 162(3): 209-225, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34255737

RESUMO

Ovulation has been described as an inflammatory event, characterized by an influx of leukocytes into the ovulatory follicle and changes in the expression profile of immune factors in both the theca and granulosa tissue layers. Since information on this process is limited in cattle, our objective was to elucidate the contribution of the immune system to dominant follicle luteinization, ovulation and corpus luteum (CL) formation in cattle. Beef heifers (n = 50) were oestrous synchronized, slaughtered and ovarian follicular or luteal tissue collected during a 96 h window around ovulation. Follicular fluid cytokine concentration, temporal immune cell infiltration and inflammatory status were determined by Luminex multiplex analysis, immunohistochemistry and quantitative real-time PCR-analysis, respectively, in pre- and peri-ovulatory follicular tissues. The concentrations of IL10 and VEGF-A were highest in pre-ovulatory and the concentration of CXCL10 was highest in peri-ovulatory follicular fluid samples. The pre and peri-ovulatory follicles play host to a broad repertoire of immune cells, including T-cells, granulocytes and monocytes. Dendritic cells were the most abundant cells in ovulatory follicular and luteal-tissue at all times. The mRNA expression of candidate genes associated with inflammation was highest in pre- and peri-ovulatory tissue, whereas tissue growth and modelling factors were highest in the post-ovulatory follicular and early luteal tissue. In conclusion, ovulation in cattle is characterized by the presence of neutrophils, macrophages and dendritic cells in the ovulatory follicle, reflected in compartmentalized cytokine and growth factor expression. These findings indicate a tightly regulated sterile inflammatory response to the LH surge in the ovulatory follicle which is rapidly resolved in advance of CL formation.


Assuntos
Folículo Ovariano , Ovulação , Animais , Bovinos , Corpo Lúteo/fisiologia , Feminino , Luteinização , Folículo Ovariano/fisiologia , Ovário , Ovulação/fisiologia
5.
Reproduction ; 159(5): 643-657, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32168470

RESUMO

In cattle, embryo transfer into the uterine horn contralateral to the corpus luteum results in a higher incidence of pregnancy loss compared to transfer into the ipsilateral horn. We have previously reported temporal changes in the endometrial transcriptome during the estrous cycle which differ between uterine horns. The objective of this study was to compare the transcriptomic response of endometrium from the ipsilateral and contralateral horns to an elongating conceptus. Cross-bred beef heifers (n = 16) were synchronized and either used to generate day 14 conceptuses following the transfer of in vitro-produced blastocysts or to obtain day 14 endometrial explants. Conceptuses were recovered on day 14 by post-mortem uterine flushing, placed individually on top of explants collected from the ipsilateral (IPSI-D14) or the contralateral (CONTRA-D14) uterine horn of cyclic heifers, and co-cultured for 6 h. The response to a conceptus was markedly different between uterine horns, with 61 and 239 differentially expressed genes (DEGs; false discovery rate <0.05) in the ipsilateral and contralateral horns, respectively, compared to their controls. Direct comparison between IPSI-D1 and CONTRA-D14 revealed 32 DEGs, including CXCL11, CXCL10, IFIT2, RSAD2 and SAMD9. Gene Ontology analysis of these 32 genes revealed ten enriched biological processes, mainly related to immune response and response to an external stimulus. These data indicate that the endometrial response to the presence of a conceptus varies between uterine horns in the same uterus and may contribute to the higher incidence of pregnancy loss following embryo transfer to the contralateral horn.


Assuntos
Corpo Lúteo/fisiologia , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Animais , Bovinos , Transferência Embrionária/veterinária , Feminino , Expressão Gênica , Gravidez , Transcriptoma
6.
Biol Reprod ; 100(5): 1238-1249, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649195

RESUMO

X-linked α-thalassemia with mental retardation (ATRX) is a chromatin remodeling protein that belongs to the SWItch/sucrose non-fermentable (SWI2/SNF2) family of helicase/ATPases. During meiosis, ATRX is necessary for heterochromatin formation and maintenance of chromosome stability in order to ensure proper assembly of the metaphase II spindle. Previously, we established ATRX as a novel progesterone regulated protein during bovine meiotic maturation, in addition to being dynamically regulated in response to DNA damage in oocytes. In the present study, we utilize the Xenopus laevis model system to further elucidate the signaling pathways regulating ATRX expression within the oocyte. Here, we present an analysis of endogenous ATRX protein expression during oogenesis, oocyte meiotic maturation, and early embryonic development. ATRX expression is dynamically regulated as evidenced by loss of the protein in metaphase II of meiosis. The downstream activation of meiosis via protein kinase A inhibition resulted in a similar decrease in ATRX protein expression. We demonstrate that the ATRX protein is detected in ubiquitin immuno-precipitates from germinal vesicle oocyte extracts and experimentally demonstrate that proteosomal degradation is responsible for the decreased expression of ATRX during meiosis. ATRX expression is significantly increased in response to gamma-irradiation induced DNA damage in oocytes and embryos. This increased expression is independent of p53 protein expression in apoptotic embryos, as determined by the expression of active caspase-3. Thus, regulation of ATRX protein expression impacts on G2-M progression and ultimately has consequences for cell survival.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dano ao DNA/fisiologia , Meiose/genética , Oócitos/metabolismo , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/genética , Ciclo Celular/fisiologia , Embrião não Mamífero , Regulação da Expressão Gênica , Meiose/fisiologia , Oócitos/fisiologia , Oogênese/genética , Proteólise , Transdução de Sinais/fisiologia , Xenopus laevis
7.
BMC Genomics ; 19(1): 438, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29866048

RESUMO

BACKGROUND: Assisted reproductive technologies (ART) are widely used to treat fertility issues in humans and for the production of embryos in mammalian livestock. The use of these techniques, however, is not without consequence as they are often associated with inauspicious pre- and postnatal outcomes including premature birth, intrauterine growth restriction and increased incidence of epigenetic disorders in human and large offspring syndrome in cattle. Here, global DNA methylation profiles in the trophectoderm and embryonic discs of in vitro produced (IVP), superovulation-derived (SOV) and unstimulated, synchronised control day 17 bovine conceptuses (herein referred to as AI) were interrogated using the EmbryoGENE DNA Methylation Array (EDMA). Pyrosequencing was used to validate four loci identified as differentially methylated on the array and to assess the differentially methylated regions (DMRs) of six imprinted genes in these conceptuses. The impact of embryo-production induced DNA methylation aberrations was determined using Ingenuity Pathway Analysis, shedding light on the potential functional consequences of these differences. RESULTS: Of the total number of differentially methylated loci identified (3140) 77.3 and 22.7% were attributable to SOV and IVP, respectively. Differential methylation was most prominent at intragenic sequences within the trophectoderm of IVP and SOV-derived conceptuses, almost a third (30.8%) of the differentially methylated loci mapped to intragenic regions. Very few differentially methylated loci were detected in embryonic discs (ED); 0.16 and 4.9% of the differentially methylated loci were located in the ED of SOV-derived and IVP conceptuses, respectively. The overall effects of SOV and IVP on the direction of methylation changes were associated with increased methylation; 70.6% of the differentially methylated loci in SOV-derived conceptuses and 57.9% of the loci in IVP-derived conceptuses were more methylated compared to AI-conceptuses. Ontology analysis of probes associated with intragenic sequences suggests enrichment for terms associated with cancer, cell morphology and growth. CONCLUSION: By examining (1) the effects of superovulation and (2) the effects of an in vitro system (oocyte maturation, fertilisation and embryo culture) we have identified that the assisted reproduction process of superovulation alone has the largest impact on the DNA methylome of subsequent embryos.


Assuntos
Bovinos/embriologia , Bovinos/genética , Metilação de DNA , Técnicas de Reprodução Assistida , Trofoblastos/metabolismo , Animais , Loci Gênicos/genética
8.
Reprod Fertil Dev ; 31(1): 118-125, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32188547

RESUMO

Embryo mortality is a major contributor to poor reproductive efficiency and profitability in cattle production systems. Coordinated interaction between the developing embryo or conceptus and the maternal reproductive tract is essential for pregnancy establishment in mammals. Up to the blastocyst stage, the embryo can grow in the absence of contact with the oviduct or uterus; however, conceptus elongation after hatching and before implantation, a characteristic of ruminant early development, is entirely maternally driven and is essential to ensure that sufficient quantities of interferon-τ (IFNT) are secreted by the developing conceptus to abrogate the mechanisms that bring about luteolysis. Surprisingly, many questions, such as the threshold level of IFNT required for pregnancy maintenance, remain unanswered. Failure of the conceptus to elongate undoubtedly results in embryonic loss and is thus believed to contribute greatly to reproductive failure in cattle.

9.
Reprod Domest Anim ; 53 Suppl 2: 20-27, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30238655

RESUMO

Embryo mortality is a major contributor to poor reproductive efficiency and profitability in cattle production systems. While conception is achieved (i.e., the oocyte is fertilized) in the vast majority of cases if insemination is carried out correctly, a significant proportion of the resulting embryos fail to develop to term. Appropriate communication between the developing conceptus and the maternal endometrium is essential for the establishment and maintenance of pregnancy in all mammals. Up to the blastocyst stage, around Days 7-9, contact worth the female reproductive system is not required. However, the process of conceptus elongation after hatching and prior to implantation is entirely maternally driven and is essential to ensure that sufficient quantities of interferon-tau (IFNT) are secreted by the developing conceptus to abrogate the mechanisms that bring about luteolysis. While the importance of conceptus-derived IFNT in maternal recognition of pregnancy and prevention of luteolysis in cattle is unequivocal, many questions, such as the threshold level of IFNT required for pregnancy maintenance, remain unanswered. Furthermore, the precise role of IFNT-independent mechanisms in pregnancy establishment remains to be elucidated. Irrespective of this, failure of the conceptus to elongate undoubtedly results in embryonic loss and is thus believed to contribute greatly to reproductive failure in cattle. This review will address some of these answered questions and try to shed some light on those gaps in knowledge that could potentially contribute to improved embryo survival and reproductive efficiency.


Assuntos
Blastocisto/fisiologia , Bovinos/embriologia , Bovinos/fisiologia , Endométrio/fisiologia , Interferon Tipo I/fisiologia , Proteínas da Gravidez/fisiologia , Animais , Implantação do Embrião/efeitos dos fármacos , Transferência Embrionária/veterinária , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gravidez , Progesterona/fisiologia
10.
Reproduction ; 153(5): 671-682, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28250240

RESUMO

A multi-species meta-analysis of published transcriptomic data from models of oocyte competence identified the chromatin remodelling factor ATRX as a putative biomarker of oocyte competence. The objective of the current study was to test the hypothesis that ATRX protein expression by cumulus-oocyte complexes (COCs) reflects their intrinsic quality and developmental potential. In excess of 10,000 bovine COCs were utilised to test our hypothesis. COCs were in vitro matured (IVM) under conditions associated with reduced developmental potential: IVM in the presence or absence of (1) progesterone synthesis inhibitor (Trilostane); (2) nuclear progesterone receptor inhibitor (Aglepristone) or (3) an inducer of DNA damage (Staurosporine). ATRX protein expression and localisation were determined using immunocytochemistry and Western blot analysis. A proportion of COCs matured in the presence or absence of Trilostane was in vitro fertilised and cultured, and subsequent embryo development characteristics were analysed. In addition, ATRX expression was investigated in 40 human germinal vesicle-stage COCs. Our results showed that ATRX is expressed in human and bovine germinal vesicle oocytes and cumulus cells. In bovine, expression decreases after IVM. However, this decline is not observed in COCs matured under sub-optimal conditions. Blastocyst development rate and cell number are decreased, whereas the incidence of abnormal metaphase phase spindle and chromosome alignment are increased, after IVM in the presence of Trilostane (P < 0.05). In conclusion, localisation of ATRX to the cumulus cell nuclei and oocyte chromatin, after IVM, is associated with poor oocyte quality and low developmental potential. Furthermore, ATRX is dynamically regulated in response to progesterone signalling.


Assuntos
Biomarcadores/metabolismo , Células do Cúmulo/citologia , DNA Helicases/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Oócitos/citologia , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Bovinos , Células do Cúmulo/metabolismo , DNA Helicases/genética , Feminino , Fertilização in vitro , Humanos , Técnicas de Maturação in Vitro de Oócitos , Proteínas Nucleares/genética , Oócitos/metabolismo , Progesterona/farmacologia , Proteína Nuclear Ligada ao X
11.
Biol Reprod ; 94(1): 19, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26607721

RESUMO

Despite the importance of fertility in humans and livestock, there has been little success dissecting the genetic basis of fertility. Our hypothesis was that genes differentially expressed in the endometrium and corpus luteum on Day 13 of the estrous cycle between cows with either good or poor genetic merit for fertility would be enriched for genetic variants associated with fertility. We combined a unique genetic model of fertility (cattle that have been selected for high and low fertility and show substantial difference in fertility) with gene expression data from these cattle and genome-wide association study (GWAS) results in ∼20,000 cattle to identify quantitative trait loci (QTL) regions and sequence variants associated with genetic variation in fertility. Two hundred and forty-five QTL regions and 17 sequence variants associated primarily with prostaglandin F2alpha, steroidogenesis, mRNA processing, energy status, and immune-related processes were identified. Ninety-three of the QTL regions were validated by two independent GWAS, with signals for fertility detected primarily on chromosomes 18, 5, 7, 8, and 29. Plausible causative mutations were identified, including one missense variant significantly associated with fertility and predicted to affect the protein function of EIF4EBP3. The results of this study enhance our understanding of 1) the contribution of the endometrium and corpus luteum transcriptome to phenotypic fertility differences and 2) the genetic architecture of fertility in dairy cattle. Including these variants in predictions of genomic breeding values may improve the rate of genetic gain for this critical trait.


Assuntos
Corpo Lúteo/metabolismo , Fertilidade/genética , Fertilidade/fisiologia , Expressão Gênica/genética , Variação Genética/genética , Variação Genética/fisiologia , Animais , Bovinos , Cromossomos/genética , Dinoprosta/biossíntese , Dinoprosta/genética , Endométrio/metabolismo , Endométrio/fisiologia , Fator de Iniciação 4F em Eucariotos/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transcriptoma
12.
BMC Dev Biol ; 15: 13, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25881176

RESUMO

BACKGROUND: In mammals, maternal differentially methylated regions (DMRs) acquire DNA methylation during the postnatal growth stage of oogenesis, with paternal DMRs acquiring DNA methylation in the perinatal prospermatagonia. Following fusion of the male and female gametes, it is widely accepted that murine DNA methylation marks at the DMRs of imprinted genes are stable through embryogenesis and early development, until they are reprogrammed in primordial germ cells. However, the DNA methylation dynamics at DMRs of bovine imprinted genes during early stages of development remains largely unknown. The objective of this investigation was to analyse the methylation dynamics at imprinted gene DMRs during bovine embryo development, from blastocyst stage until implantation. RESULTS: To this end, pyrosequencing technology was used to quantify DNA methylation at DMR-associated CpG dinucleotides of six imprinted bovine genes (SNRPN, MEST, IGF2R, PLAGL1, PEG10 and H19) using bisulfite-modified genomic DNA isolated from individual blastocysts (Day 7); ovoid embryos (Day 14); filamentous embryos (Day 17) and implanting conceptuses (Day 25). For all genes, the degree of DNA methylation was most variable in Day 7 blastocysts compared to later developmental stages (P < 0.05). Furthermore, mining of RNA-seq transcriptomic data and western blot analysis revealed a specific window of expression of DNA methylation machinery genes (including DNMT3A, DNMT3B, TRIM28/KAP1 and DNMT1) and proteins (DNMT3A, DNMT3A2 and DNMT3B) by bovine embryos coincident with imprint stabilization. CONCLUSION: The findings of this study suggest that the DNA methylation status of bovine DMRs might be variable during the early stages of embryonic development, possibly requiring an active period of imprint stabilization.


Assuntos
Blastocisto , Metilação de DNA , Desenvolvimento Embrionário/genética , Impressão Genômica , Animais , Bovinos
13.
Reprod Fertil Dev ; 27(5): 739-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25976160

RESUMO

The use of assisted reproductive technology (ART) to overcome fertility problems has continued to increase since the birth of the first baby conceived by ART over 30 years ago. Similarly, embryo transfer is widely used as a mechanism to advance genetic gain in livestock. Despite repeated optimisation of ART treatments, pre- and postnatal outcomes remain compromised. Epigenetic mechanisms play a fundamental role in successful gametogenesis and development. The best studied of these is DNA methylation; the appropriate establishment of DNA methylation patterns in gametes and early embryos is essential for healthy development. Superovulation studies in the mouse indicate that specific ARTs are associated with normal imprinting establishment in oocytes, but abnormal imprinting maintenance in embryos. A similar limited impact of ART on oocytes has been reported in cattle, whereas the majority of embryo-focused studies have used cloned embryos, which do exhibit aberrant DNA methylation. The present review discusses the impact of ART on oocyte and embryo DNA methylation with regard to data available from mouse and bovine models.


Assuntos
Metilação de DNA , Impressão Genômica , Oogênese/genética , Técnicas de Reprodução Assistida , Animais , Bovinos , Epigênese Genética , Feminino , Masculino , Camundongos , Modelos Animais
14.
Genomics ; 104(3): 177-85, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25084396

RESUMO

Ovarian follicle development in post-partum, high-producing dairy cows, occurs in a compromised endogenous metabolic environment (referred to as negative energy balance, NEB). Key events that occur during oocyte/follicle growth, such as the vital process of genomic imprinting, may be detrimentally affected by this altered ovarian environment. Imprinting is crucial for placental function and regulation of fetal growth, therefore failure to establish and maintain imprints during oocyte growth may contribute to early embryonic loss. Using ovum pick-up (OPU), oocytes and follicular fluid samples were recovered from cows between days 20 and 115 post-calving, encompassing the NEB period. In a complimentary study, cumulus oocyte complexes were in vitro matured under high non-esterified fatty acid (NEFA) concentrations and in the presence of the methyl-donor S-adenosylmethionine (SAM). Pyrosequencing revealed the loss of methylation at several imprinted loci in the OPU derived oocytes. The loss of DNA methylation was observed at the PLAGL1 locus in oocytes, following in vitro maturation (IVM) in the presence of elevated NEFAs and SAM. Finally, metabolomic analysis of postpartum follicular fluid samples revealed significant differences in several branched chain amino acids, with fatty acid profiles bearing similarities to those characteristic of lactating dairy cows. These results provide the first evidence that (1) the postpartum ovarian environment may affect maternal imprint acquisition and (2) elevated NEFAs during IVM can lead to the loss of imprinted gene methylation in bovine oocytes.


Assuntos
Bovinos/genética , Metabolismo Energético , Impressão Genômica , Oócitos/metabolismo , Período Pós-Parto/genética , Animais , Bovinos/metabolismo , Bovinos/fisiologia , Metilação de DNA , Ácidos Graxos não Esterificados/metabolismo , Feminino , Líquido Folicular/metabolismo , Metaboloma , Período Pós-Parto/metabolismo , S-Adenosilmetionina/metabolismo , Fatores de Transcrição/genética
15.
Reprod Fertil Dev ; 26(2): 337-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23514964

RESUMO

The follicle is a unique micro-environment within which the oocyte can develop and mature to a fertilisable gamete. The aim of this study was to investigate the ability of a panel of follicular parameters, including intrafollicular steroid and metabolomic profiles and theca, granulosa and cumulus cell candidate gene mRNA abundance, to predict the potential of bovine oocytes to develop to the blastocyst stage in vitro. Individual follicles were dissected from abattoir ovaries, carefully ruptured under a stereomicroscope and the oocyte was recovered and individually processed through in vitro maturation, fertilisation and culture. The mean (±s.e.m.) follicular concentrations of testosterone (62.8±4.8 ngmL(-1)), progesterone (616.8±31.9 ngmL(-1)) and oestradiol (14.4±2.4 ngmL(-1)) were not different (P>0.05) between oocytes that formed (competent) or failed to form (incompetent) blastocysts. Principal-component analysis of the quantified aqueous metabolites in follicular fluid showed differences between oocytes that formed blastocysts and oocytes that degenerated; l-alanine, glycine and l-glutamate were positively correlated and urea was negatively correlated with blastocyst formation. Follicular fluid associated with competent oocytes was significantly lower in palmitic acid (P=0.023) and total fatty acids (P=0.031) and significantly higher in linolenic acid (P=0.036) than follicular fluid from incompetent oocytes. Significantly higher (P<0.05) transcript abundance of LHCGR in granulosa cells, ESR1 and VCAN in thecal cells and TNFAIP6 in cumulus cells was associated with competent compared with incompetent oocytes.


Assuntos
Microambiente Celular , Fertilidade , Líquido Folicular/metabolismo , Oócitos/metabolismo , Animais , Biomarcadores/metabolismo , Blastocisto/metabolismo , Bovinos , Técnicas de Cultura Embrionária/veterinária , Feminino , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Maturação in Vitro de Oócitos/veterinária , Metabolômica/métodos , Gravidez , RNA Mensageiro/metabolismo
16.
J Anim Sci Biotechnol ; 15(1): 104, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097731

RESUMO

BACKGROUND: Within the follicular fluid, extracellular vesicles (EVs) guide oocyte growth through their cargo microRNAs (miRNAs). Here, we investigated the role of EVs and their cargo miRNAs by linking the miRNAs found in EVs, derived from the fluid of an individual follicle, to the ability of its oocyte to become a blastocyst (competent) or not (non-competent). METHODS: Bovine antral follicles were dissected, categorized as small (2-4 mm) or large (5-8 mm) and the corresponding oocytes were subjected to individual maturation, fertilization and embryo culture to the blastocyst stage. Follicular fluid was pooled in 4 groups (4 replicates) based on follicle size and competence of the corresponding oocyte to produce a blastocyst. Follicular fluid-derived EVs were isolated, characterized, and subjected to miRNA-sequencing (Illumina Miseq) to assess differential expression (DE) in the 4 groups. Functional validation of the effect of miR-34c on embryo development was performed by supplementation of mimics and inhibitors during in vitro maturation (IVM). RESULTS: We identified 16 DE miRNAs linked to oocyte competence when follicular size was not considered. Within the large and small follicles, 46 DE miRNAs were driving blastocyst formation in each group. Comparison of EVs from competent small and large follicles revealed 90 DE miRNAs. Cell regulation, cell differentiation, cell cycle, and metabolic process regulation were the most enriched pathways targeted by the DE miRNAs from competent oocytes. We identified bta-miR-34c as the most abundant in follicular fluid containing competent oocytes. Supplementation of miR-34c mimic and inhibitor during IVM did not affect embryo development. However, blastocyst quality, as evidenced by higher cell numbers, was significantly improved following oocyte IVM in the presence of miR-34c mimics, while miR-34c inhibitors resulted in the opposite effect. CONCLUSION: This study demonstrates the regulatory effect of miRNAs from follicular fluid-derived EVs on oocyte competence acquisition, providing a further basis for understanding the significance of miRNAs in oocyte maturation and embryonic development. Up-regulation of miR-34c in EVs from follicular fluid containing competent oocytes and the positive impact of miR-34c mimics added during IVM on the resulting blastocysts indicate its pivotal role in oocyte competence.

17.
Biol Reprod ; 89(6): 146, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24174577

RESUMO

Inhibition of progesterone (P4) synthesis by cumulus cells during bovine in vitro oocyte maturation (IVM) causes a decrease in subsequent embryo development, indicating that P4 intracellular signaling within the cumulus oocyte complex (COC) is important for oocyte developmental competence. The aim of the present study was to further elucidate, on a protein level, the downstream signaling pathway involved in P4 regulation of oocyte developmental competence. COCs were subjected to IVM for 24 h in the presence or absence of trilostane, aglepristone, or promegestone (R5020). These altered IVM conditions resulted in dynamic changes in protein expression of the progesterone receptors and the cell death-regulated proteins AVEN, BCL-xL, and active caspase 3. In addition, AVEN protein localization, caspase 3 activation, and mitochondrial distribution were studied by immunofluorescence. Inhibition of progesterone synthesis (trilostane treatment) resulted in changes in AVEN localization within the COC, corresponding to caspase 3 activation and altered mitochondrial distribution. AVEN was also found to bind BCL-xL in COCs, but this interaction was lost following treatment with trilostane.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose , Meiose , Oócitos/efeitos dos fármacos , Progesterona/farmacologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Bovinos , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Técnicas de Maturação in Vitro de Oócitos/veterinária , Meiose/efeitos dos fármacos , Meiose/genética , Mitocôndrias/fisiologia , Dados de Sequência Molecular , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , Oogênese/genética , Homologia de Sequência de Aminoácidos
18.
Animal ; 17 Suppl 1: 100866, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37567670

RESUMO

The oocyte is the basis of life, supporting development from a fertilized cell to an independent multicellular organism. The oocyte's competence to drive the first cell cycles postfertilization are critical to embryonic survival and subsequent successful pregnancy. Coupled with the complex processes of follicle assembly, activation, differentiation, growth, and terminal maturation, oocyte developmental competence is gradually acquired during oocyte growth and meiotic maturation. Most reproduction management technologies and interventions are centered around these highly coordinated processes, targeting the ovarian follicle and the oocyte within. Thus, our objective was to highlight key aspects of oocyte and follicle development in cattle, and to discuss recent advances in oocyte and follicle-centered reproductive biotechnologies.


Assuntos
Oócitos , Folículo Ovariano , Gravidez , Feminino , Bovinos , Animais , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Fertilidade , Reprodução , Fertilização
19.
Biol Reprod ; 86(3): 67, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22088914

RESUMO

A subset of genes, known as imprinted genes, is present in the mammalian genome. Genomic imprinting governs the monoallelic expression of these genes, depending on whether the gene was inherited from the sperm or the egg. This parent-of-origin specific gene expression is generally dependent on the epigenetic modification, DNA methylation, and the DNA methylation status of CpG dinucleotides residing in loci known as differentially methylated regions (DMRs). The enzymatic machinery responsible for the addition of methyl (-CH(3)) groups to the cytosine residue in the CpG dinucleotides are known as DNA methyltransferases (DNMTs). Correct establishment and maintenance of methylation patterns at imprinted genes has been associated with placental function and regulation of embryonic/fetal development. Much work has been carried out on imprinted genes in mouse and human; however, little is known about the methylation dynamics in the bovine oocyte. The primary objective of the present study was to characterize the establishment of methylation at maternally imprinted genes in bovine growing oocytes and to determine if the expression of the bovine DNMTs-DNMT3A, DNMT3B, and DNMT3L-was coordinated with DNA methylation during oocyte development. To this end, a panel of maternally imprinted genes was selected (SNRPN, MEST, IGF2R, PEG10, and PLAGL1) and putative DMRs for MEST, IGF2R, PEG10, and PLAGL1 were identified within the 5' regions for each gene; the SNRPN DMR has been reported previously. Conventional bisulfite sequencing revealed that methylation marks were acquired at all five DMRs investigated in an oocyte size-dependent fashion. This was confirmed for a selection of genes using pyrosequencing analysis. Furthermore, mRNA expression and protein analysis revealed that DNMT3A, DNMT3B, and DNMT3L are also present in the bovine oocyte during its growth phase. This study demonstrates for the first time that an increase in bovine imprinted gene DMR methylation occurs during oocyte growth, as is observed in mouse.


Assuntos
Bovinos/fisiologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/fisiologia , Impressão Genômica/fisiologia , Oócitos/citologia , Oócitos/metabolismo , Animais , Bovinos/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Metiltransferase 3A , Feminino , Impressão Genômica/genética , Modelos Animais , Oogênese/genética , Oogênese/fisiologia , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Proteínas Centrais de snRNP/genética , Proteínas Centrais de snRNP/metabolismo
20.
Biol Reprod ; 87(5): 123, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23034158

RESUMO

In mammals, successful pregnancy is dependent in part on the adaptation or regulation of the maternal immune system to prevent the rejection of the embryonic semiallograft. A modification in Th cell function and secretion is a requirement for the establishment and maintenance of pregnancy. Although there is strong evidence from studies in humans and mice linking successful pregnancy with the predominance of Th2-type immunity, the situation in cattle remains unclear. This study describes the characterization of the immune response of the bovine maternal endometrium to the presence of a developing embryo, with specific emphasis on the macrophage and dendritic cell populations and associated factors, using quantitative real-time PCR, in situ hybridization, and immunohistochemistry. Furthermore, in vivo and in vitro models were developed to investigate the potential role of progesterone and interferon-tau (IFNT) in the regulation of these immune factors. There was a marked increase in the population of CD14(+) cells and CD172a-CD11c(+) cells in the endometrium in response to pregnancy, which was paralleled by increased mRNA expression of a number of non-Th-associated factors, including IL12B and IL15, and downregulation of IL18. In addition, we identified several novel IFNT- and progesterone-regulated factors, including IL12B, MCP1, MCP2, PTX3, RSAD2, and TNFA, whose regulation may be critical to pregnancy outcome. Our findings give center stage to non-Th cells, such as monocytes/macrophages and dendritic cells, in the bovine immune response to the semiallogenic embryo. In conclusion, we propose that in cattle, successful pregnancy establishment is associated with a dramatic regulation of the cytokine network, primarily by endometrial monocytes/macrophages and dendritic cells.


Assuntos
Bovinos/imunologia , Células Dendríticas/imunologia , Embrião de Mamíferos/imunologia , Endométrio/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Citocinas/genética , Células Dendríticas/metabolismo , Desenvolvimento Embrionário , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Hibridização In Situ , Interferon Tipo I/fisiologia , Macrófagos/metabolismo , Monócitos/metabolismo , Gravidez , Proteínas da Gravidez/fisiologia , Progesterona/fisiologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa