Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 46(2): 273-285, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36522796

RESUMO

Peroxisomes are essential organelles involved in lipid metabolisms including plasmalogen biosynthesis and ß-oxidation of very long-chain fatty acids. Peroxisomes proliferate by the growth and division of pre-existing peroxisomes. The peroxisomal membrane is elongated by Pex11ß and then divided by the dynamin-like GTPase, DLP1 (also known as DRP1 encoded by DNM1L gene), which also functions as a fission factor for mitochondria. Nucleoside diphosphate kinase 3 (NME3) localized in both peroxisomes and mitochondria generates GTP for DLP1 activity. Deficiencies of either of these factors induce abnormal morphology of peroxisomes and/or mitochondria, and are associated with central nervous system dysfunction. To investigate whether the impaired division of peroxisomes affects lipid metabolisms, we assessed the phospholipid composition of cells lacking each of the different division factors. In fibroblasts from the patients deficient in DLP1, NME3, or Pex11ß, docosahexaenoic acid (DHA, C22:6)-containing phospholipids were found to be decreased. Conversely, the levels of several fatty acids such as arachidonic acid (AA, C20:4) and oleic acid (C18:1) were elevated. Mouse embryonic fibroblasts from Drp1- and Pex11ß-knockout mice also showed a decrease in the levels of phospholipids containing DHA and AA. Collectively, these results suggest that the dynamics of organelle morphology exert marked effects on the fatty acid composition of phospholipids.


Assuntos
Ácidos Docosa-Hexaenoicos , Peroxissomos , Animais , Camundongos , Ácidos Docosa-Hexaenoicos/metabolismo , Dinaminas/metabolismo , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Morfogênese , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Peroxissomos/metabolismo , Fosfolipídeos/metabolismo
2.
J Inherit Metab Dis ; 46(2): 232-242, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515074

RESUMO

Galactosemia is an inborn disorder of carbohydrate metabolism of which early detection can prevent severe illness. Although the assay for galactose-1-phosphate uridyltransferase (GALT) enzyme activity has been available since the 1960s, many issues prevented it from becoming universal. In order to develop the Israeli newborn screening pilot algorithm for galactosemia, flow injection analysis tandem mass spectrometry measurement of galactose-1-phosphate in archived dried blood spots from newborns with classical galactosemia, galactosemia variants, epimerase deficiency, and normal controls, was conducted. Out of 431 330 newborns screened during the pilot study (30 months), two with classical galactosemia and four with epimerase deficiency were identified and confirmed. Five false positives and no false negatives were recorded. Following this pilot study, the Israeli final and routine newborn screening algorithm, as recommended by the Advisory Committee to the National Newborn Screening Program, now consists of galactose-1-phosphate measurement integrated into the routine tandem mass spectrometry panel as the first-tier screening test, and GALT enzyme activity as the second-tier performed to identify only newborns suspected to be at risk for classical galactosemia. The GALT enzyme activity cut-off used in the final algorithm was lowered in order to avoid false positives.


Assuntos
Galactosemias , Humanos , Recém-Nascido , Galactosemias/diagnóstico , Triagem Neonatal/métodos , Projetos Piloto , UTP-Hexose-1-Fosfato Uridililtransferase , Racemases e Epimerases
3.
J Am Soc Nephrol ; 33(4): 732-745, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35149593

RESUMO

BACKGROUND: The endocytic reabsorption of proteins in the proximal tubule requires a complex machinery and defects can lead to tubular proteinuria. The precise mechanisms of endocytosis and processing of receptors and cargo are incompletely understood. EHD1 belongs to a family of proteins presumably involved in the scission of intracellular vesicles and in ciliogenesis. However, the relevance of EHD1 in human tissues, in particular in the kidney, was unknown. METHODS: Genetic techniques were used in patients with tubular proteinuria and deafness to identify the disease-causing gene. Diagnostic and functional studies were performed in patients and disease models to investigate the pathophysiology. RESULTS: We identified six individuals (5-33 years) with proteinuria and a high-frequency hearing deficit associated with the homozygous missense variant c.1192C>T (p.R398W) in EHD1. Proteinuria (0.7-2.1 g/d) consisted predominantly of low molecular weight proteins, reflecting impaired renal proximal tubular endocytosis of filtered proteins. Ehd1 knockout and Ehd1R398W/R398W knockin mice also showed a high-frequency hearing deficit and impaired receptor-mediated endocytosis in proximal tubules, and a zebrafish model showed impaired ability to reabsorb low molecular weight dextran. Interestingly, ciliogenesis appeared unaffected in patients and mouse models. In silico structural analysis predicted a destabilizing effect of the R398W variant and possible inference with nucleotide binding leading to impaired EHD1 oligomerization and membrane remodeling ability. CONCLUSIONS: A homozygous missense variant of EHD1 causes a previously unrecognized autosomal recessive disorder characterized by sensorineural deafness and tubular proteinuria. Recessive EHD1 variants should be considered in individuals with hearing impairment, especially if tubular proteinuria is noted.


Assuntos
Surdez , Peixe-Zebra , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Surdez/genética , Endocitose , Humanos , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Mutação , Proteinúria/metabolismo , Proteínas de Transporte Vesicular/genética , Adulto Jovem , Peixe-Zebra/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(2): 566-574, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30587587

RESUMO

We report a patient who presented with congenital hypotonia, hypoventilation, and cerebellar histopathological alterations. Exome analysis revealed a homozygous mutation in the initiation codon of the NME3 gene, which encodes an NDP kinase. The initiation-codon mutation leads to deficiency in NME3 protein expression. NME3 is a mitochondrial outer-membrane protein capable of interacting with MFN1/2, and its depletion causes dysfunction in mitochondrial dynamics. Consistently, the patient's fibroblasts were characterized by a slow rate of mitochondrial dynamics, which was reversed by expression of wild-type or catalytic-dead NME3. Moreover, glucose starvation caused mitochondrial fragmentation and cell death in the patient's cells. The expression of wild-type and catalytic-dead but not oligomerization-attenuated NME3 restored mitochondrial elongation. However, only wild-type NME3 sustained ATP production and viability. Thus, the separate functions of NME3 in mitochondrial fusion and NDP kinase cooperate in metabolic adaptation for cell survival in response to glucose starvation. Given the critical role of mitochondrial dynamics and energy requirements in neuronal development, the homozygous mutation in NME3 is linked to a fatal mitochondrial neurodegenerative disorder.


Assuntos
Trifosfato de Adenosina , Metabolismo Energético/genética , Homozigoto , Dinâmica Mitocondrial/genética , Nucleosídeo NM23 Difosfato Quinases , Doenças Neurodegenerativas , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Sobrevivência Celular , Feminino , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/patologia , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia
5.
Clin Genet ; 98(4): 402-407, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32683677

RESUMO

COG6-congenital disorder of glycosylation (COG6-CDG) is caused by biallelic mutations in COG6. To-date, 12 variants causing COG6-CDG in less than 20 patients have been reported. Using whole exome sequencing we identified two siblings with a novel homozygous deletion of 26 bp in COG6, creating a splicing variant (c.518_540 + 3del) and a shift in the reading frame. The phenotype of COG6-CDG includes growth and developmental retardation, microcephaly, liver and gastrointestinal disease, hypohydrosis and recurrent infections. We report two patients with novel phenotypic features including bowel malrotation and ambiguous genitalia, directing attention to the role of glycoprotein metabolism in the causation of disorders of sex development (DSD). Searching the glycomic literature, we identified 14 CDGs including males with DSD, a feature not previously accentuated. This study broadens the genetic and phenotypic spectrum of COG6-CDG and calls for increasing awareness to the central role of glycosylation processes in development of human sex and genitalia.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Defeitos Congênitos da Glicosilação/genética , Transtornos do Desenvolvimento Sexual/genética , Oxigenases de Função Mista/genética , Defeitos Congênitos da Glicosilação/mortalidade , Defeitos Congênitos da Glicosilação/fisiopatologia , Transtornos do Desenvolvimento Sexual/mortalidade , Transtornos do Desenvolvimento Sexual/fisiopatologia , Feminino , Glicosilação , Homozigoto , Humanos , Recém-Nascido , Masculino , Mutação/genética , Fenótipo , Deleção de Sequência/genética , Irmãos , Sequenciamento do Exoma
6.
BMC Med Ethics ; 21(1): 98, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059675

RESUMO

BACKGROUND: The Arab population in Israel is a minority ethnic group with its own distinct cultural subgroups. Minority populations are known to underutilize genetic tests and counseling services, thereby undermining the effectiveness of these services among such populations. However, the general and culture-specific reasons for this underutilization are not well defined. Moreover, Arab populations and their key cultural-religious subsets (Muslims, Christians, and Druze) do not reside exclusively in Israel, but are rather found as a minority group in many European and North American countries. Therefore, focusing on the Arab population in Israel allows for the examination of attitudes regarding genetic testing and counseling among this globally important ethnic minority population. METHODS: We used a qualitative research method, employing individual interviews with 18 women of childbearing age from three religious subgroups (i.e., Druze, Muslim, and Christian) who reside in the Acre district, along with focus group discussions with healthcare providers (HCPs; 9 nurses and 7 genetic counselors) working in the same geographical district. RESULTS: A general lack of knowledge regarding the goals and practice of genetic counseling resulting in negative preconceptions of genetic testing was identified amongst all counselees. Counselors' objective of respecting patient autonomy in decision-making, together with counselees' misunderstanding of genetic risk data, caused uncertainty, frustration, and distrust. In addition, certain interesting variations were found between the different religious subgroups regarding their attitudes to genetic counseling. CONCLUSIONS: The study highlights the miscommunications between HCPs, particularly counselors from the majority ethno-cultural group, and counselees from a minority ethno-cultural group. The need for nuanced understanding of the complex perspectives of minority ethno-cultural groups is also emphasized. Such an understanding may enhance the effectiveness of genetic testing and counseling among the Arab minority group while also genuinely empowering the personal autonomy of counselees from this minority group in Israel and other countries.


Assuntos
Aconselhamento Genético , Grupos Minoritários , Árabes/genética , Aconselhamento , Feminino , Testes Genéticos , Humanos , Israel , América do Norte , Pesquisa Qualitativa
7.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126676

RESUMO

Peroxisomes proliferate by sequential processes comprising elongation, constriction, and scission of peroxisomal membrane. It is known that the constriction step is mediated by a GTPase named dynamin-like protein 1 (DLP1) upon efficient loading of GTP. However, mechanism of fuelling GTP to DLP1 remains unknown in mammals. We earlier show that nucleoside diphosphate (NDP) kinase-like protein, termed dynamin-based ring motive-force organizer 1 (DYNAMO1), generates GTP for DLP1 in a red alga, Cyanidioschyzon merolae. In the present study, we identified that nucleoside diphosphate kinase 3 (NME3), a mammalian homologue of DYNAMO1, localizes to peroxisomes. Elongated peroxisomes were observed in cells with suppressed expression of NME3 and fibroblasts from a patient lacking NME3 due to the homozygous mutation at the initiation codon of NME3. Peroxisomes proliferated by elevation of NME3 upon silencing the expression of ATPase family AAA domain containing 1, ATAD1. In the wild-type cells expressing catalytically-inactive NME3, peroxisomes were elongated. These results suggest that NME3 plays an important role in peroxisome division in a manner dependent on its NDP kinase activity. Moreover, the impairment of peroxisome division reduces the level of ether-linked glycerophospholipids, ethanolamine plasmalogens, implying the physiological importance of regulation of peroxisome morphology.


Assuntos
Dinaminas/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Peroxissomos/metabolismo , Frações Subcelulares/metabolismo , Sequência de Aminoácidos , Animais , Células HeLa , Homozigoto , Humanos , Rodófitas , Homologia de Sequência
8.
J Low Genit Tract Dis ; 23(1): 58-64, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30418350

RESUMO

OBJECTIVE: The aim of the study was to study the associations between localized provoked vulvodynia (LPV) and several single-nucleotide polymorphisms (SNPs) in the transient receptor potential vanilloid type 1 (TRPV1), nerve growth factor (NGF), and the heparanase (HPSE) genes. MATERIALS AND METHODS: Prevalence of SNPs among 65 women with moderate or severe primary LPV (initial symptoms occur with first provoking physical contact) and 126 healthy, ethnically matched controls was analyzed in an observational case-control study. Each participant answered a questionnaire addressing familial LPV occurrence and comorbid pain conditions. RESULTS: Familial occurrences of LPV, temporomandibular joint (TMJ) symptoms, recurrent vaginitis, and irritable bowel syndrome were significantly higher among LPV women than healthy controls. Genotyping analyses revealed a novel, statistically significant high prevalence of polymorphism c.945G>C (rs222747) of TRPV1 and a SNP in the promoter region of NGF (rs11102930) in LPV women compared with controls. A logistic regression model for rs222747 and rs11102930 frequent alleles indicates significant LPV association within the entire study group and Ashkenazi Jewish women, respectively. Comparison of pain conditions with frequent alleles showed the rs222747 "CC" genotype of TRPV1 associated with women with TMJ, recurrent vaginitis, and LPV. CONCLUSIONS: Our results suggest novel genetic susceptibility to primary LPV associated with specific alleles in genes TRPV1 and NGF and propose the rs222747 "C" allele of TRPV1 as a common genetic predisposition for other pain syndromes.


Assuntos
Predisposição Genética para Doença , Genótipo , Fator de Crescimento Neural/genética , Canais de Cátion TRPV/genética , Vulvodinia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Glucuronidase/genética , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Inquéritos e Questionários , Adulto Jovem
9.
J Lipid Res ; 59(11): 2214-2222, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30135217

RESUMO

Cerebrotendinous xanthomatosis (CTX) is a progressive metabolic leukodystrophy. Early identification and treatment from birth onward effectively provides a functional cure, but diagnosis is often delayed. We conducted a pilot study using a two-tier test for CTX to screen archived newborn dried bloodspots (DBSs) or samples collected prospectively from a high-risk Israeli newborn population. All DBS samples were analyzed with flow injection analysis (FIA)-MS/MS, and 5% of samples were analyzed with LC-MS/MS. Consecutively collected samples were analyzed to identify CTX-causing founder genetic variants common among Druze and Moroccan Jewish populations. First-tier analysis with FIA-MS/MS provided 100% sensitivity to detect CTX-positive newborn DBSs, with a low false-positive rate (0.1-0.5%). LC-MS/MS, as a second-tier test, provided 100% sensitivity to detect CTX-positive newborn DBSs with a false-positive rate of 0% (100% specificity). In addition, 5ß-cholestane-3α,7α,12α,25-tetrol-3-O-ß-D-glucuronide was identified as the predominant bile-alcohol disease marker present in CTX-positive newborn DBSs. In newborns identifying as Druze, a 1:30 carriership frequency was determined for the c.355delC CYP27A1 gene variant, providing an estimated disease prevalence of 1:3,600 in this population. These data support the feasibility of two-tier DBS screening for CTX in newborns and set the stage for large-scale prospective pilot studies.


Assuntos
Triagem Neonatal/métodos , Xantomatose Cerebrotendinosa/diagnóstico , Cromatografia Líquida , Humanos , Recém-Nascido , Estudos Prospectivos , Espectrometria de Massas em Tandem
10.
Brain ; 140(2): 370-386, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28007986

RESUMO

Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A2-activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E2 and cytosolic phospholipase A2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E2 and cytosolic phospholipase A2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E2 The non-functional phospholipase A2-activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance.


Assuntos
Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Leucoencefalopatias/fisiopatologia , Proteínas/genética , Proteínas/metabolismo , Adolescente , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Consanguinidade , Dinoprostona/metabolismo , Embrião de Mamíferos , Saúde da Família , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica/genética , Humanos , Leucoencefalopatias/diagnóstico por imagem , Pulmão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , NF-kappa B/metabolismo , Fosfolipases A2/metabolismo , Pele/patologia
12.
Am J Hum Genet ; 90(1): 102-9, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22177090

RESUMO

Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together encompassing 46 Mb. Next-generation sequencing of all exons, flanking intron sequences, microRNAs, and other highly conserved genomic elements in these three regions revealed a homozygous nonsense mutation (c.497T>A [p.Leu166(∗)]) in C8orf37, located on chromosome 8q22.1. This mutation was not present in 150 ethnically matched control individuals, single-nucleotide polymorphism databases, or the 1000 Genomes database. Immunohistochemical studies revealed C8orf37 localization at the base of the primary cilium of human retinal pigment epithelium cells and at the base of connecting cilia of mouse photoreceptors. C8orf37 sequence analysis of individuals who had retinal dystrophy and carried conspicuously large homozygous regions encompassing C8orf37 revealed a homozygous splice-site mutation (c.156-2A>G) in two siblings of a consanguineous family and homozygous missense mutations (c.529C>T [p.Arg177Trp]; c.545A>G [p.Gln182Arg]) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are probably pathogenic. Clinical assessment revealed CRD in four individuals and RP with early macular involvement in two individuals. The two CRD siblings with the c.156-2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies.


Assuntos
Genes Recessivos , Mutação , Proteínas/genética , Distrofias Retinianas/genética , Adolescente , Idade de Início , Sequência de Bases , Criança , Pré-Escolar , Mapeamento Cromossômico , Consanguinidade , Análise Mutacional de DNA , Éxons , Feminino , Humanos , Lactente , Íntrons , Masculino , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Epitélio Pigmentado da Retina/metabolismo
13.
Eur J Med Res ; 29(1): 194, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528581

RESUMO

BACKGROUND: The aim of this study was to determine whether genetic variants are associated with idiopathic intracranial hypertension (IIH) in a unique village where many of the IIH patients have familial ties, a homogenous population and a high prevalence of consanguinity. Several autosomal recessive disorders are common in this village and its population is considered at a high risk for genetic disorders. METHODS: The samples were genotyped by the Ilumina OmniExpress-24 Kit, and analyzed by the Eagle V2.4 and DASH software package to cluster haplotypes shared between our cohort. Subsequently, we searched for specific haplotypes that were significantly associated with the patient groups. RESULTS: Fourteen patients and 30 controls were included. Samples from 22 female participants (11 patients and 11 controls) were evaluated for haplotype clustering and genome-wide association studies (GWAS). A total of 710,000 single nucleotide polymorphisms (SNPs) were evaluated. Candidate areas positively associated with IIH included genes located on chromosomes 16, 8 (including the CA5A and BANP genes, p < 0.01), and negatively associated with genes located on chromosomes 1 and 6 (including PBX1, LMX1A, ESR1 genes, p < 0.01). CONCLUSIONS: We discovered new loci possibly associated with IIH by employing a GWAS technique to estimate the associations with haplotypes instead of specific SNPs. This method can in all probability be used in cases where there is a limited amount of samples but strong familial connections. Several loci were identified that might be strong candidates for follow-up studies in other well-phenotypes cohorts.


Assuntos
Pseudotumor Cerebral , Humanos , Feminino , Estudo de Associação Genômica Ampla/métodos , Estudos de Associação Genética , Genótipo , Fenótipo , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
14.
JAMA Netw Open ; 7(2): e240146, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386321

RESUMO

Importance: National implementation of rapid trio genome sequencing (rtGS) in a clinical acute setting is essential to ensure advanced and equitable care for ill neonates. Objective: To evaluate the feasibility, diagnostic efficacy, and clinical utility of rtGS in neonatal intensive care units (NICUs) throughout Israel. Design, Setting, and Participants: This prospective, public health care-based, multicenter cohort study was conducted from October 2021 to December 2022 with the Community Genetics Department of the Israeli Ministry of Health and all Israeli medical genetics institutes (n = 18) and NICUs (n = 25). Critically ill neonates suspected of having a genetic etiology were offered rtGS. All sequencing, analysis, and interpretation of data were performed in a central genomics center at Tel-Aviv Sourasky Medical Center. Rapid results were expected within 10 days. A secondary analysis report, issued within 60 days, focused mainly on cases with negative rapid results and actionable secondary findings. Pathogenic, likely pathogenic, and highly suspected variants of unknown significance (VUS) were reported. Main Outcomes and Measures: Diagnostic rate, including highly suspected disease-causing VUS, and turnaround time for rapid results. Clinical utility was assessed via questionnaires circulated to treating neonatologists. Results: A total of 130 neonates across Israel (70 [54%] male; 60 [46%] female) met inclusion criteria and were recruited. Mean (SD) age at enrollment was 12 (13) days. Mean (SD) turnaround time for rapid report was 7 (3) days. Diagnostic efficacy was 50% (65 of 130) for disease-causing variants, 11% (14 of 130) for VUS suspected to be causative, and 1 novel gene candidate (1%). Disease-causing variants included 12 chromosomal and 52 monogenic disorders as well as 1 neonate with uniparental disomy. Overall, the response rate for clinical utility questionnaires was 82% (107 of 130). Among respondents, genomic testing led to a change in medical management for 24 neonates (22%). Results led to immediate precision medicine for 6 of 65 diagnosed infants (9%), an additional 2 (3%) received palliative care, and 2 (3%) were transferred to nursing homes. Conclusions and Relevance: In this national cohort study, rtGS in critically ill neonates was feasible and diagnostically beneficial in a public health care setting. This study is a prerequisite for implementation of rtGS for ill neonates into routine care and may aid in design of similar studies in other public health care systems.


Assuntos
Estado Terminal , Terapia Intensiva Neonatal , Lactente , Recém-Nascido , Feminino , Masculino , Humanos , Estudos de Coortes , Estudos Prospectivos , Unidades de Terapia Intensiva Neonatal
15.
J Med Genet ; 49(7): 462-72, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22717650

RESUMO

BACKGROUND: Members of two seemingly unrelated kindreds of Arab Moslem origin presented with pronounced early onset spastic paraparesis of upper and lower limbs, mild intellectual disability, kyphosis, pectus carinatum and hypertrichosis. METHODS: The authors performed neurological and developmental examinations on the affected individuals. The authors conducted whole genome linkage and haplotype analyses, followed by sequencing of candidate genes; RNA and protein expression studies; and finally proof of principle investigations on knockdown morpholino oligonucleotide injected zebrafish. RESULTS: The authors characterise a novel form of autosomal recessive complex hereditary spastic paraparesis (CHSP). MRI studies of brain and spinal cord were normal. Within a single significantly linked locus the authors ultimately identified a homozygous missense mutation c.1146A>T (p.K382N) in the vacuolar protein sorting 37A (Vps37A) gene, fully penetrant and segregating with the disease in both families. Mobility was significantly reduced in Vps37A knockdown morpholino oligonucleotide injected zebrafish, supporting the causal relationship between mutations in this gene and the phenotype described in the patients of this study. CONCLUSIONS: The authors provide evidence for the involvement of Vps37A, a member of the endosomal sorting complex required for transport (ESCRT) system, in upper motor neuron disease. The ESCRT system has been shown to play a central role in intracellular trafficking, in the maturation of multivesicular bodies and the sorting of ubiquitinated membrane proteins into internal luminal vesicles. Further investigation of mechanisms by which dysfunction of this gene causes CHSP will contribute to the understanding of intracellular trafficking of vesicles by the ESCRT machinery and its relevance to CHSP.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Genes Recessivos , Mutação de Sentido Incorreto , Paraplegia Espástica Hereditária/genética , Animais , Encéfalo/metabolismo , Criança , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 8/genética , Cromossomos Humanos Par 8/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Efeito Fundador , Técnicas de Silenciamento de Genes , Ligação Genética , Haplótipos , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Linhagem , Fenótipo , Seleção Genética , Paraplegia Espástica Hereditária/fisiopatologia , Peixe-Zebra
16.
Front Pediatr ; 11: 1178280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780041

RESUMO

Introduction: Pathogenic variants of the junctional adhesion molecule 3 (JAM3/JAM-C; OMIM#606871) is the cause of the rare recessive disorder called hemorrhagic destruction of the brain, subependymal calcification, and cataracts (HDBSCC, OMIM#613730) disease. A similar phenotype is universal, including congenital cataracts and brain hemorrhages with high mortality rate in the first few weeks of life and with a poor neurologic outcome in survivors. We aim to describe and enlighten novel phenotype and genotype of a new patient and review the literature regarding all reported patients worldwide. Case report: We report the case of a prenatal and postnatal phenotype of a new patient with a novel pathogenic loss-of-function variant in JAM3, who presented prenatally with cataracts and brain anomalies and postnatally with brain hemorrhages, failure to thrive (FTT), progressive microcephaly, recurrent posterior capsule opacities, and auditory neuropathy. Discussion: This study enlightens novel possible functions of JAM3 in the normal development of the brain, the ocular lenses, the auditory system, and possibly the gastrointestinal tract. This study is the first to report of cataracts evident in as early as 23 weeks of gestation and a rare phenomenon of recurrent posterior capsule opacities despite performing recurrent posterior capsulectomy and anterior vitrectomy. We suggest that auditory neuropathy, which is reported here for the first time, is part of the phenotype of HDBSCC, probably due to an endothelial microvasculature disruption of the peripheral eighth nerve or possibly due to impaired nerve conduction from the synapse to the brainstem. Conclusions: Prenatal cataracts, brain anomalies, FTT, and auditory neuropathy are part of the phenotype of the HDBSCC disease. We suggest including JAM3 in the gene list known to cause congenital cataracts, brain hemorrhages, and hearing loss. Further studies should address the auditory neuropathy and FTT phenomena in knockout mice models. We further suggest performing comprehensive ophthalmic, audiologic, and gastroenterologic evaluations for living patients worldwide to further confirm these novel phenomena in this rare entity.

17.
Front Genet ; 14: 1135267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999056

RESUMO

Introduction: Hereditary orotic aciduria is an extremely rare, autosomal recessive disease caused by deficiency of uridine monophosphate synthase. Untreated, affected individuals may develop refractory megaloblastic anemia, neurodevelopmental disabilities, and crystalluria. Newborn screening has the potential to identify and enable treatment of affected individuals before they become significantly ill. Methods: Measuring orotic acid as part of expanded newborn screening using flow injection analysis tandem mass spectrometry. Results: Since the addition of orotic acid measurement to the Israeli routine newborn screening program, 1,492,439 neonates have been screened. The screen has identified ten Muslim Arab newborns that remain asymptomatic so far, with DBS orotic acid elevated up to 10 times the upper reference limit. Urine organic acid testing confirmed the presence of orotic aciduria along with homozygous variations in the UMPS gene. Conclusion: Newborn screening measuring of orotic acid, now integrated into the routine tandem mass spectrometry panel, is capable of identifying neonates with hereditary orotic aciduria.

18.
Front Cell Dev Biol ; 10: 902969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769264

RESUMO

Background: NGLY1 is an enigmatic enzyme with multiple functions across a wide range of species. In humans, pathogenic genetic variants in NGLY1 are linked to a variable phenotype of global neurological dysfunction, abnormal tear production, and liver disease presenting the rare autosomal recessive disorder N-glycanase deficiency. We have ascertained four NGLY1 deficiency patients who were found to carry a homozygous nonsense variant (c.1294G > T, p.Glu432*) in NGLY1. Methods: We created an ngly1 deficiency zebrafish model and studied the nervous and musculoskeletal (MSK) systems to further characterize the phenotypes and pathophysiology of the disease. Results: Nervous system morphology analysis has shown significant loss of axon fibers in the peripheral nervous system. In addition, we found muscle structure abnormality of the mutant fish. Locomotion behavior analysis has shown hypersensitivity of the larval ngly1 (-/-) fish during stress conditions. Conclusion: This first reported NGLY1 deficiency zebrafish model might add to our understanding of NGLY1 role in the development of the nervous and MSK systems. Moreover, it might elucidate the natural history of the disease and be used as a platform for the development of novel therapies.

19.
Mol Genet Genomic Med ; 10(1): e1849, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34970863

RESUMO

BACKGROUND: We aimed to determine the molecular and biochemical basis of an extended highly consanguineous family with multiple children presenting severe congenital hypotonia. METHODS: Clinical investigations, homozygosity mapping, linkage analyses and whole exome sequencing, were performed. mRNA and protein levels were determined. Population screening was followed. RESULTS: We have identified a novel nonsense variant in NGLY1 in two affected siblings, and compound heterozygosity for three novel RYR1 variants in two affected sisters from another nuclear family within the broad pedigree. Population screening revealed a high prevalence of carriers for both diseases. The genetic variants were proven to be pathogenic, as demonstrated by western blot analyses. CONCLUSIONS: Revealing the genetic diagnosis enabled us to provide credible genetic counselling and pre-natal diagnosis to the extended family and genetic screening for this high-risk population. Whole exome/genome sequencing should be the first tier tool for accurate determination of the genetic basis of congenital hypotonia. Two different genetic disorders within a large consanguineous pedigree should be always considered.


Assuntos
Hipotonia Muscular , Doenças Musculares , Criança , Consanguinidade , Exoma , Família , Humanos , Hipotonia Muscular/genética , Doenças Musculares/genética , Linhagem
20.
Curr Alzheimer Res ; 19(10): 694-707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278440

RESUMO

BACKGROUND: The clinical characteristics of symptomatic and asymptomatic carriers of early- onset autosomal dominant Alzheimer's (EOADAD) due to a yet-undescribed chromosomal rearrangement may add to the available body of knowledge about Alzheimer's disease and may enlighten novel and modifier genes. We report the clinical and genetic characteristics of asymptomatic and symptomatic individuals carrying a novel APP duplication rearrangement. METHODS: Individuals belonging to a seven-generation pedigree with familial cognitive decline or intracerebral hemorrhages were recruited. Participants underwent medical, neurological, and neuropsychological evaluations. The genetic analysis included chromosomal microarray, Karyotype, fluorescence in situ hybridization, and whole genome sequencing. RESULTS: Of 68 individuals, six females presented with dementia, and four males presented with intracerebral hemorrhage. Of these, nine were found to carry Chromosome 21 copy number gain (chr21:27,224,097-27,871,284, GRCh37/hg19) including the APP locus (APP-dup). In seven, Chromosome 5 copy number gain (Chr5: 24,786,234-29,446,070, GRCh37/hg19) (Chr5-CNG) cosegregated with the APP-dup. Both duplications co-localized to chromosome 18q21.1 and segregated in 25 pre-symptomatic carriers. Compared to non-carriers, asymptomatic carriers manifested cognitive decline in their mid-thirties. A third of the affected individuals carried a diagnosis of a dis-immune condition. CONCLUSION: APP extra dosage, even in isolation and when located outside chromosome 21, is pathogenic. The clinical presentation of APP duplication varies and may be gender specific, i.e., ICH in males and cognitive-behavioral deterioration in females. The association with immune disorders is presently unclear but may prove relevant. The implication of Chr5-CNG co-segregation and the surrounding chromosome 18 genetic sequence needs further clarification.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Feminino , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Estudos Transversais , Hibridização in Situ Fluorescente , Linhagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa