Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO J ; 40(1): e104416, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33185277

RESUMO

The transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex. Here, using blue-native PAGE and quantitative mass spectrometry, we identify native PIN core transport units as homo- and heteromers assembled from PIN1, PIN2, PIN3, PIN4 and PIN7 subunits only. Furthermore, we show that endogenous flavonols stabilize PIN dimers to regulate auxin efflux in the same way as does the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). This inhibitory mechanism is counteracted both by the natural auxin indole-3-acetic acid and by phosphomimetic amino acids introduced into the PIN1 cytoplasmic domain. Our results lend mechanistic insights into an endogenous control mechanism which regulates PIN function and opens the way for a deeper understanding of the protein environment and regulation of the polar auxin transport complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Flavonóis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Ftalimidas/metabolismo
2.
J Am Chem Soc ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967537

RESUMO

In lithium-ion batteries, the solid electrolyte interphase (SEI) passivates the anode against reductive decomposition of the electrolyte but allows for electron transfer reactions between anode and redox shuttle molecules, which are added to the electrolyte as an internal overcharge protection. In order to elucidate the origin of these poorly understood passivation properties of the SEI with regard to different molecules, we used a four-electrode-based generator-collector setup to distinguish between electrolyte reduction current and the redox molecule (ferrocenium ion Fc+) reduction current at an SEI-covered glassy carbon electrode. The experiments were carried out in situ during potentiostatic SEI formation close to battery operation potentials. The measured generator and collector currents were used to calculate passivation factors of the SEI with regard to electrolyte reduction and with regard to Fc+ reduction. These passivation factors show huge differences in their absolute values and in their temporal evolution. By making simple assumptions about molecule transport, electron transport, and charge transfer reaction rates in the SEI, distinct passivation mechanisms are identified, strong indication is found for a transition during SEI growth from redox molecule reduction at the electrode | SEI interface to reduction at the SEI | electrolyte interface, and good estimates for the transport coefficients of both electrons and redox molecules are derived. The approach presented here is applicable to any type of electrochemical interphase and should thus also be of interest for interphase characterization in the fields of electrocatalysis and corrosion.

3.
Nat Methods ; 16(4): 351, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30804552

RESUMO

In the version of this paper originally published, one of the affiliations for Dominic Mai was incorrect: "Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany" should have been "Life Imaging Center, Center for Biological Systems Analysis, Albert-Ludwigs-University, Freiburg, Germany." This change required some renumbering of subsequent author affiliations. These corrections have been made in the PDF and HTML versions of the article, as well as in any cover sheets for associated Supplementary Information.

4.
Nat Methods ; 16(1): 67-70, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559429

RESUMO

U-Net is a generic deep-learning solution for frequently occurring quantification tasks such as cell detection and shape measurements in biomedical image data. We present an ImageJ plugin that enables non-machine-learning experts to analyze their data with U-Net on either a local computer or a remote server/cloud service. The plugin comes with pretrained models for single-cell segmentation and allows for U-Net to be adapted to new tasks on the basis of a few annotated samples.


Assuntos
Contagem de Células , Aprendizado Profundo , Computação em Nuvem , Redes Neurais de Computação , Design de Software
5.
Plant J ; 92(1): 31-42, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28670824

RESUMO

Using the intrinsic Root Coordinate System (iRoCS) Toolbox, a digital atlas at cellular resolution has been constructed for Nicotiana tabacum roots. Mitotic cells and cells labeled for DNA replication with 5-ethynyl-2'-deoxyuridine (EdU) were mapped. The results demonstrate that iRoCS analysis can be applied to roots that are thicker than those of Arabidopsis thaliana without histological sectioning. A three-dimensional (3-D) analysis of the root tip showed that tobacco roots undergo several irregular periclinal and tangential divisions. Irrespective of cell type, rapid cell elongation starts at the same distance from the quiescent center, however, boundaries between cell proliferation and transition domains are cell-type specific. The data support the existence of a transition domain in tobacco roots. Cell endoreduplication starts in the transition domain and continues into the elongation zone. The tobacco root map was subsequently used to analyse root organization changes caused by the inducible expression of the Agrobacterium 6b oncogene. In tobacco roots that express the 6b gene, the root apical meristem was shorter and radial cell growth was reduced, but the mitotic and DNA replication indexes were not affected. The epidermis of 6b-expressing roots produced less files and underwent abnormal periclinal divisions. The periclinal division leading to mature endodermis and cortex3 cell files was delayed. These findings define additional targets for future studies on the mode of action of the Agrobacterium 6b oncogene.


Assuntos
Agrobacterium/genética , Imageamento Tridimensional , Nicotiana/citologia , Ciclo Celular/genética , Replicação do DNA , Meristema/citologia , Meristema/genética , Oncogenes/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Nicotiana/genética
6.
Science ; 363(6425)2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30679343

RESUMO

The innate immune cell compartment is highly diverse in the healthy central nervous system (CNS), including parenchymal and non-parenchymal macrophages. However, this complexity is increased in inflammatory settings by the recruitment of circulating myeloid cells. It is unclear which disease-specific myeloid subsets exist and what their transcriptional profiles and dynamics during CNS pathology are. Combining deep single-cell transcriptome analysis, fate mapping, in vivo imaging, clonal analysis, and transgenic mouse lines, we comprehensively characterized unappreciated myeloid subsets in several CNS compartments during neuroinflammation. During inflammation, CNS macrophage subsets undergo self-renewal, and random proliferation shifts toward clonal expansion. Last, functional studies demonstrated that endogenous CNS tissue macrophages are redundant for antigen presentation. Our results highlight myeloid cell diversity and provide insights into the brain's innate immune system.


Assuntos
Sistema Nervoso Central/imunologia , Imunidade Inata , Inflamação/imunologia , Macrófagos/citologia , Células Mieloides/citologia , Animais , Apresentação de Antígeno , Encéfalo/imunologia , Células Dendríticas/citologia , Encefalomielite Autoimune Experimental/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Homeostase , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/citologia , Células Mieloides/imunologia , Análise de Sequência de RNA , Análise de Célula Única , Linfócitos T/imunologia
7.
Methods Mol Biol ; 1787: 161-170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736717

RESUMO

In plants as well as other organisms, protein localization alone is insufficient to provide a mechanistic link between stimulus and process regulation. This is because protein-protein interactions are central to the regulation of biological processes. However, they remain very difficult to detect in situ, with the choice of tools for the detection of protein-protein interaction in situ still in need of expansion. Here, we provide a protocol for the detection and accurate localization of protein interactions based on the combination of a whole-mount proximity ligation assay and iRoCS, a coordinate system able to standardize subtle differences between the architecture of individual Arabidopsis roots.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Arabidopsis/metabolismo , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Ligação Proteica , Transporte Proteico , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa