Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(38): e2403808, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38770988

RESUMO

Direct electrosynthesis of hydrogen peroxide (H2O2) with high production rate and high selectivity through the two-electron oxygen reduction reaction (2e-ORR) offers a sustainable alternative to the energy-intensive anthraquinone technology but remains a challenge. Herein, a low-coordinated, 2D conductive Zn/Cu metal-organic framework supported on hollow nanocube structures (ZnCu-MOF (H)) is rationally designed and synthesized. The as-prepared ZnCu-MOF (H) catalyst exhibits substantially boosted electrocatalytic kinetics, enhanced H2O2 selectivity, and ultra-high Faradaic efficiency for 2e-ORR process in both alkaline and neutral conditions. Electrochemical measurements, operando/quasi in situ spectroscopy, and theoretical calculation demonstrate that the introduction of Cu atoms with low-coordinated structures induces the transformation of active sites, resulting in the beneficial electron transfer and the optimized energy barrier, thereby improving the electrocatalytic activity and selectivity.

2.
Angew Chem Int Ed Engl ; 63(8): e202317572, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38116911

RESUMO

Exploring unique single-atom sites capable of efficiently reducing O2 to H2 O2 while being inert to H2 O2 decomposition under light conditions is significant for H2 O2 photosynthesis, but it remains challenging. Herein, we report the facile design and fabrication of polymeric carbon nitride (CN) decorated with single-Zn sites that have tailorable local coordination environments, which is enabled by utilizing different Zn salt anions. Specifically, the O atom from acetate (OAc) anion participates in the coordination of single-Zn sites on CN, forming asymmetric Zn-N3 O moiety on CN (denoted as CN/Zn-OAc), in contrast to the obtained Zn-N4 sites when sulfate (SO4 ) is adopted (CN/Zn-SO4 ). Both experimental and theoretical investigations demonstrate that the Zn-N3 O moiety exhibits higher intrinsic activity for O2 reduction to H2 O2 than the Zn-N4 moiety. This is attributed to the asymmetric N/O coordination, which promotes the adsorption of O2 and the formation of the key intermediate *OOH on Zn sites due to their modulated electronic structure. Moreover, it is inactive for H2 O2 decomposition under both dark and light conditions. As a result, the optimized CN/Zn-OAc catalyst exhibits significantly improved photocatalytic H2 O2 production activity under visible light irradiation.

3.
Angew Chem Int Ed Engl ; 63(39): e202409628, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38973645

RESUMO

Transition metal coordination polymers (TM-CP) are promising inexpensive and flexible electrocatalysts for oxygen evolution reaction in water electrolysis, while their facile synthesis and controllable regulation remain challenging. Here we report an anodic oxidation-electrodeposition strategy for the growth of TM-CP (TM=Fe, Co, Ni, Cr, Mn; CP=polyaniline, polypyrrole) films on a variety of metal substrates that act as both catalyst supports and metal ion sources. An exemplified bimetallic NiFe-polypyrrole (NiFe-PPy) features superior mechanical stability in friction and exhibits high activity with long-term durability in alkaline seawater (over 2000 h) and anion exchange membrane electrolyzer devices at current density of 500 mA cm-2. Spectroscopic and microscopic analysis unravels the configurations with atomically distributed metal sites induced by d-π conjugation, which transforms into a mosaic structure with NiFe (oxy)hydroxides embedded in PPy matrix during oxygen evolution. The superior catalytic performance is ascribed to the anchoring effect of PPy that inhibits metal dissolution, the strong substrate-to-catalyst interaction that ensures good adhesion, and the Fe/Ni-N coordination that modulates the electronic structures to facilitate the deprotonation of *OOH intermediate. This work provides a general strategy and mechanistic insight into building robust inorganic/polymer composite electrodes for oxygen electrocatalysis.

4.
Angew Chem Int Ed Engl ; 63(39): e202409698, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38924667

RESUMO

While the ambient N2 reduction to ammonia (NH3) using H2O as hydrogen source (2N2+6H2O=4NH3+3O2) is known as a promising alternative to the Haber-Bosch process, the high bond energy of N≡N bond leads to the extremely low NH3 yield. Herein, we report a highly efficient catalytic system for ammonia synthesis using the low-temperature dielectric barrier discharge plasma to activate inert N2 molecules into the excited nitrogen species, which can efficiently react with the confined and concentrated H2O molecules in porous metal-organic framework (MOF) reactors with V3+, Cr3+, Mn3+, Fe3+, Co2+, Ni2+ and Cu2+ ions. Specially, the Fe-based catalyst MIL-100(Fe) causes a superhigh NH3 yield of 22.4 mmol g-1 h-1. The investigation of catalytic performance and systematic characterizations of MIL-100(Fe) during the plasma-driven catalytic reaction unveils that the in situ generated defective Fe-O clusters are the highly active sites and NH3 molecules indeed form inside the MIL-100(Fe) reactor. The theoretical calculation reveals that the porous MOF catalysts have different adsorption capacity for nitrogen species on different catalytic metal sites, where the optimal MIL-100(Fe) has the lowest energy barrier for the rate-limiting *NNH formation step, significantly enhancing efficiency of nitrogen fixation.

5.
Angew Chem Int Ed Engl ; 63(22): e202404258, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38454791

RESUMO

Engineering advantageous defects to construct well-defined active sites in catalysts is promising but challenging to achieve efficient photocatalytic NH3 synthesis from N2 and H2O due to the chemical inertness of N2 molecule. Here, we report defective Fe-based metal-organic framework (MOF) photocatalysts via a non-thermal plasma-assisted synthesis strategy, where their NH3 production capability is synergistically regulated by two types of defects, namely, bridging organic ligands and terminal inorganic ligands (OH- and H2O). Specially, the optimized MIL-100(Fe) catalysts, where there are only terminal inorganic ligand defects and coexistence of dual defects, exhibit the respective 1.7- and 7.7-fold activity enhancement comparable to the pristine catalyst under visible light irradiation. As revealed by experimental and theoretical calculation results, the dual defects in the catalyst induce the formation of abundant and highly accessible coordinatively unsaturated Fe active sites and synergistically optimize their geometric and electronic structures, which favors the injection of more d-orbital electrons in Fe sites into the N2 π* antibonding orbital to achieve N2 activation and the formation of a key intermediate *NNH in the reaction. This work provides a guidance on the rational design and accurate construction of porous catalysts with precise defective structures for high-performance activation of catalytic molecules.

6.
Angew Chem Int Ed Engl ; 63(29): e202406007, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687057

RESUMO

While the mild production of syngas (a mixture of H2 and CO) from CO2 and H2O is a promising alternative to the coal-based chemical engineering technologies, the inert nature of CO2 molecules, unfavorable splitting pathways of H2O and unsatisfactory catalysts lead to the challenge in the difficult integration of high CO2 conversion efficiency with produced syngas with controllable H2/CO ratios in a wide range. Herein, we report an efficient plasma-driven catalytic system for mild production of pure syngas over porous metal-organic framework (MOF) catalysts with rich confined H2O molecules, where their syngas production capacity is regulated by the in situ evolved ligand defects and the plasma-activated intermediate species of CO2 molecules. Specially, the Cu-based catalyst system achieves 61.9 % of CO2 conversion and the production of pure syngas with wide H2/CO ratios of 0.05 : 1-4.3 : 1. As revealed by the experimental and theoretical calculation results, the in situ dynamic structure evolution of Cu-containing MOF catalysts favors the generation of coordinatively unsaturated metal active sites with optimized geometric and electronic characteristics, the adsorption of reactants, and the reduced energy barriers of syngas-production potential-determining steps of the hydrogenation of CO2 to *COOH and the protonation of H2O to *H.

7.
Angew Chem Int Ed Engl ; 62(26): e202303529, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37132610

RESUMO

Vanadium based compounds are promising cathode materials for aqueous zinc (Zn)-ion batteries (AZIBs) due to their high specific capacity. However, the narrow interlayer spacing, low intrinsic conductivity and the vanadium dissolution still restrict their further application. Herein, we present an oxygen-deficient vanadate pillared by carbon nitride (C3 N4 ) as the cathode for AZIBs through a facile self-engaged hydrothermal strategy. Of note, C3 N4 nanosheets can act as both the nitrogen source and pre-intercalation species to transform the orthorhombic V2 O5 into layered NH4 V4 O10 with expanded interlayer spacing. Owing to the pillared structure and abundant oxygen vacancies, both the Zn2+ ion (de)intercalation kinetics and the ionic conductivity in the NH4 V4 O10 cathode are promoted. As a result, the NH4 V4 O10 cathode delivers exceptional Zn-ion storage ability with a high specific capacity of about 370 mAh g-1 at 0.5 A g-1 , a high-rate capability of 194.7 mAh g-1 at 20 A g-1 and a stable cycling performance of 10 000 cycles.


Assuntos
Vanadatos , Compostos de Vanádio , Zinco , Vanádio , Íons , Oxigênio
8.
J Am Chem Soc ; 144(25): 11129-11137, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35700394

RESUMO

The hydrophobic internal cavity and hydrophilic external surface of cyclodextrins (CDs) render promising electrochemical applications. Here, we report a comparative and mechanistic study on the use of CD molecules (α-, ß-, and γ-CD) as electrolyte additives for rechargeable Zn batteries. The addition of α-CD in aqueous ZnSO4 solution reduces nucleation overpotential and activation energy of Zn plating and suppresses H2 generation. Computational, spectroscopic, and electrochemical studies reveal that α-CD preferentially adsorbs in parallel on the Zn surface via secondary hydroxyl groups, suppressing water-induced side reactions of hydrogen evolution and hydroxide sulfate formation. Additionally, the hydrophilic exterior surface of α-CD with intense electron density simultaneously facilitates Zn2+ deposition and alleviates Zn dendrite formation. A formulated 3 M ZnSO4 + 10 mM α-CD electrolyte enables homogenous Zn plating/stripping (average Coulombic efficiency ∼ 99.90%) at 1 mA cm-2 in Zn|Cu cells and a considerable capacity retention of 84.20% after 800 cycles in Zn|V2O5 full batteries. This study provides insight into the use of supramolecular macrocycles to modulate and enhance the interface stability and kinetics of metallic anodes for aqueous battery chemistry.


Assuntos
Ciclodextrinas , Ciclodextrinas/química , Eletrodos , Cinética , Água , Zinco
9.
Angew Chem Int Ed Engl ; 61(45): e202212542, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36093883

RESUMO

Trapping the active sites on the exterior surface of hollow supports can reduce mass transfer resistance and enhance atomic utilization. Herein, we report a facile chemical vapor deposition strategy to synthesize single-Ni atoms decorated hollow S/N-doped football-like carbon spheres (Ni SAs@S/N-FCS). Specifically, the CdS@3-aminophenol/formaldehyde is carbonized into S/N-FCS. The gas-migrated Ni species are anchored on the surface of S/N-FCS simultaneously, yielding Ni SAs@S/N-FCS. The obtained catalyst exhibits outstanding performance for alkaline oxygen evolution reaction (OER) with an overpotential of 249 mV at 10 mA cm-2 , a small Tafel slope of 56.5 mV dec-1 , and ultra-long stability up to 166 hours without obvious fading. Moreover, the potential-driven dynamic behaviors of Ni-N4 sites and the contribution of the S dopant at different locations in the matrix to the OER activity are revealed by the operando X-ray absorption spectroscopy and theoretical calculations, respectively.

10.
J Am Chem Soc ; 143(7): 2829-2837, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33587623

RESUMO

Engineering a stable solid electrolyte interphase (SEI) is one of the critical maneuvers in improving the performance of a lithium anode for high-energy-density rechargeable lithium batteries. Herein, we build a fluorinated lithium/sodium hybrid interphase via a facile electroless electrolyte-soaking approach to stabilize the repeated plating/stripping of lithium metal. Jointed experimental and computational characterizations reveal that the fluorinated hybrid SEI mainly consisting of NaF, LiF, LixPOyFz, and organic components features a mosaic polycrystalline structure with enriched grain boundaries and superior interfacial properties toward Li. This LiF/NaF hybrid SEI exhibits improved ionic conductivity and mechanical strength in comparison to the SEI without NaF. Remarkably, the fluorinated hybrid SEI enables an extended dendrite-free cycling of metallic Li over 1300 h at a high areal capacity of 10 mAh cm-2 in symmetrical cells. Furthermore, full cells based on the LiFePO4 cathode and hybrid SEI-protected Li anode sustain long-term stability and good capacity retention (96.70% after 200 cycles) at 0.5 C. This work could provide a new avenue for designing robust multifunctional SEI to upgrade the metallic lithium anode.

11.
Angew Chem Int Ed Engl ; 59(9): 3511-3516, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31889387

RESUMO

The electrocatalytic nitrogen reduction reaction (NRR) is an alternative eco-friendly strategy for sustainable N2 fixation with renewable energy. However, NRR suffers from sluggish kinetics owing to difficult N2 adsorption and N≡N cleavage. Now, nanoporous palladium hydride is reported as electrocatalyst for electrochemical N2 reduction under ambient conditions, achieving a high ammonia yield rate of 20.4 µg h-1 mg-1 with a Faradaic efficiency of 43.6 % at low overpotential of 150 mV. Isotopic hydrogen labeling studies suggest the involvement of lattice hydrogen atoms in the hydride as active hydrogen source. In situ Raman analysis and density functional theory (DFT) calculations further reveal the reduction of energy barrier for the rate-limiting *N2 H formation step. The unique protonation mode of palladium hydride would provide a new insight on designing efficient and robust electrocatalysts for nitrogen fixation.

12.
Angew Chem Int Ed Engl ; 58(52): 19021-19026, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31591805

RESUMO

A photo-involved Li-O2 battery with carbon nitride (C3 N4 ) is presented as a bifunctional photocatalyst to accelerate both oxygen reduction and evolution reactions. With illumination in a discharge process, photoelectrons generated in the conduction band (CB) of C3 N4 are donated to O2 for O2 - , which undergoes a second electron reduction to O2 2- and gives the final product of Li2 O2 ; in a reverse process, holes left behind in the valence band (VB) of C3 N4 plus an applied lower voltage than the equilibrium drive the Li2 O2 oxidation. The discharge voltage is significantly increased to 3.22 V, surpassing the thermodynamic limit of 2.96 V, and the charge voltage is reduced to 3.38 V. This leads to a record-high round-trip efficiency of 95.3 % and energy density increase of 23.0 % compared to that in the dark.

13.
Angew Chem Int Ed Engl ; 58(36): 12460-12464, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31273902

RESUMO

Utilization of solar energy is of great interest for a sustainable society, and its conversion into electricity in a compact battery is challenging. Herein, a zinc-air battery with the polymer semiconductor polytrithiophene (pTTh) as the cathode is reported for direct conversion of photoenergy into electric energy. Upon irradiation, photoelectrons are generated in the conduction band (CB) of pTTh and then injected into the π2p * orbitals of O2 for its reduction to HO2 - , which is disproportionated to OH- and drives the oxidation of Zn to ZnO at the anode. The discharge voltage was significantly increased to 1.78 V without decay during discharge-charge cycles over 64 h, which corresponds to an energy density increase of 29.0 % as compared to 1.38 V for a zinc-air battery with state-of-the-art Pt/C. The zinc-air battery with an intrinsically different reaction scheme for simultaneous conversion of chemical and photoenergy into electric energy opens a new pathway for utilization of solar energy.

14.
Angew Chem Int Ed Engl ; 56(4): 1101-1104, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-27966813

RESUMO

The first example of a hypervalent iodine(III)-mediated oxidative fluorination of alkylsilanes by fluoride ions without the use of transition metals is demonstrated. This reaction is operationally simple, scalable, and proceeds under mild reaction conditions. Mechanistic studies suggest the involvement of a single-electron transfer resulting from the interaction of an organopentafluorosilicate and aryliodonium difluoride, which were generated in situ from the corresponding alkylsilane and iodosobenzene, respectively, in the presence of fluoride ions.

16.
Adv Mater ; 34(42): e2204865, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36048463

RESUMO

Despite suffering from slow charge-carrier mobility, photocatalysis is still an attractive and promising technology toward producing green fuels from solar energy. An effective approach is to design and fabricate advanced architectural materials as photocatalysts to enhance the performance of semiconductor-based photocatalytic systems. Herein, metal-organic-framework-derived hierarchically ordered porous nitrogen and carbon co-doped ZnO (N-C-ZnO) structures are developed as nanoreactors with decorated CoOx nanoclusters for CO2 -to-CO conversion driven by visible light. Introduction of hierarchical nanoarchitectures with highly ordered interconnected meso-macroporous channels shows beneficial properties for photocatalytic reduction reactions, including enhanced mobility of charge carriers throughout the highly accessible framework, maximized exposure of active sites, and inhibited recombination of photoinduced charge carriers. Density functional theory calculations further reveal the key role of CoOx nanoclusters with high affinity to CO2 molecules, and the CoO bonds formed on the surface of the composite exhibit stronger charge redistribution. As a result, the obtained CoOx /N-C-ZnO demonstrates enhanced photocatalysis performance in terms of high CO yield and long-term stability.

17.
ACS Appl Mater Interfaces ; 13(40): 47650-47658, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34586779

RESUMO

Metallic zinc (Zn) is an attractive anode material to use for building an aqueous battery but suffers from dendritic growth and water-induced corrosion. Herein, we report the use of vanillin as a bifunctional additive in aqueous electrolyte to stabilize the Zn electrochemistry. Computational, spectroscopic, and electrochemical studies suggest that vanillin molecules preferentially absorb in parallel on the Zn surface to homogenize the Zn2+ plating and favorably coordinate with Zn2+ to weaken the solvation interaction between H2O and Zn2+, resulting in a compact, dendrite-free Zn deposition and a stable electrode-electrolyte interface with suppressed hydrogen evolution and hydroxide sulfate formation. In the formulated 2 M ZnSO4 electrolyte with 5 mM vanillin, the Zn anode sustains high areal capacity (10 mAh cm-2 at 1 mA cm-2) and remarkable cycling stability (1 mAh cm-2 for 1000 h) in a Zn|Zn cell and high average Coulombic efficiency (99.8%) in a Zn|Cu cell, significantly outperforming the cells without vanillin. Furthermore, the vanillin additive supports stable operation of full Zn|V2O5 batteries and is readily generalized to a Zn(CF3SO3)2-based electrolyte. This work offers a facile and cost-effective strategy of electrolyte design to enable high-performance aqueous Zn batteries.

18.
Adv Mater ; 33(42): e2101126, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34480495

RESUMO

Ambient nitrogen reduction reaction (NRR) is attracting extensive interest but still suffers from sluggish kinetics owing to competitive rapid hydrogen evolution and difficult nitrogen activation. Herein, nanoporous NiSb alloy is reported as an efficient electrocatalyst for N2 fixation, achieving a high ammonia yield rate of 56.9 µg h-1 mg-1 with a Faradaic efficiency of 48.0%. Density functional theory calculations reveal that in NiSb alloy, Ni favors N2 hydrogenation while the neighboring Sb separates active sites for proton and N2 adsorption, which optimizes the adsorption/desorption of intermediates and enables an energetically favorable NRR pathway. This work indicates promising electrocatalytic application of the alloys of 3d and p block metals toward the NRR and provides an intriguing strategy to enhance the reduction of inert molecules by restraining the competitive hydrogen adsorption.

19.
ACS Appl Mater Interfaces ; 13(5): 6367-6374, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497191

RESUMO

Metallic lithium is one of the most promising anode materials to build next generation electrochemical power sources such as Li-air, Li-sulfur, and solid-state lithium batteries. The implementation of rechargeable Li-based batteries is plagued by issues including dendrites, pulverization, and an unstable solid electrolyte interface (SEI). Herein, we report the use of nanostructured CuO in situ grown on commercial copper foil (CuO@Cu) via chemical etching as a Li-reservoir substrate to stabilize SEI formation and Li stripping/plating. The lithiophilic interconnected CuO layer enhances electrolyte wettability. Besides, a mechanically stable Li2O- and LiF-rich SEI is generated on CuO@Cu during initial discharge, which permits dense and uniform lithium deposition upon subsequent cycling. Compared with bare Cu, the CuO@Cu electrode exhibits superior performance in terms of Coulombic efficiency, discharge/charge overpotentials, and cyclability. By pairing with the Li-CuO@Cu anodes, full cells with LiFePO4 and LiNi1/3Mn1/3Co1/3O2 cathodes sustain 300 cycles with 98.8% capacity retention at 1 C and deliver a specific capacity of 80 mAh g-1 at 10 C, respectively. This work would shed light on the design of advanced current collectors with SEI modulation to upgrade lithium anodes.

20.
Chem Commun (Camb) ; 56(80): 11957-11960, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33033815

RESUMO

Isolated diatomic Zn-Fe anchored on nitrogen-doped carbon is explored as an efficient and robust electrocatalyst for N2 reduction in a neutral aqueous electrolyte, delivering a high NH3 yield rate (30.5 µg h-1 mgcat.-1) and considerable faradaic efficiency (26.5%) at a low overpotential of -300 mV. Density functional theory calculations reveal that the Zn-Fe atomic pairs synergistically favor N2 activation and reduce the reaction barrier for the rate-limiting step of intermediate *NNH formation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa