Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668264

RESUMO

The bonding surface structure generated by the repair of concrete structures has been paid more attention as a weak point. The effects of old concrete age, interface roughness, and freeze-thawing (F-T) attack on adhesive interface are comprehensively investigated. In this study, six kinds of interface roughness and five different old concrete age are designed. The interfacial bonding property is mainly evaluated by splitting tensile strength (fts). Fractal analysis was used to characterize the interface roughness using laser scanning data. In general, the fts increased with the increasing value of interface fractal dimension. The relationship between fts and fractal dimension value was further analyzed, considering the old concrete ages and the F-T cycles. The results show that the effect of roughness on the bonding property of new-to-old concrete is more significant than the age of old concrete, and the influence of the F-T cycles on the bonding surface is mainly reflected in the initial stage of the F-T deterioration process. The relative dynamic elasticity modulus decreased obviously under F-T cycles, especially for the specimens with low interface roughness. In combination with the results of two non-destructive methods (ultrasonic non-destructive test and relative dynamic elastic modulus test), the larger roughness and the smaller age of old concrete can improve the bond performance.

2.
Materials (Basel) ; 13(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297535

RESUMO

Herein, a new geopolymer is recognized as a potential alternative cementing material of ordinary Portland cement (OPC), which is used for reducing carbon emissions and efficiently recycling the waste. Therefore this paper mainly studied the alkali-activated coal gangue-slag concrete (ACSC) was prepared by using the coal gangue-slag and Na2SiO3 and NaOH complex activator. The ratio of coal gangue (calcined and uncalcined) coarse aggregate replacing the gravel was 0%, 30%, 50%, 70%, and 100%. The water and salt freeze-thaw resistance, compressive strength, chloride permeation, microstructure, performance mechanism, inner freeze-thaw damage distribution, and mechanics models of ACSC were investigated. Results show that ACSC displayed excellent early age compressive strength, and the compact degree and uniformity of structure were better compared with the ordinary Portland cement (OPC) when the coal gangue replacement rate was less than 50%. The ACSC demonstrated the best chloride penetration resistance under 30% uncalcined coal gangue content, which was less than 27.75% lower than that of using OPC. At the same number cycles, especially in the salt freezing, the calcined coal gangue had lowered advantages of improving resistance freeze-thaw damage resistance. Water and salt accumulative freeze-thaw damage mechanics models of ACSC were established by using the relative dynamic elasticity modulus. The exponential function model was superior to the power function model with better precision and relativity, and the models accurately reflected the freeze-thaw damage effect.

3.
Materials (Basel) ; 13(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560417

RESUMO

This study examined the depth-width correlation of actual shrinkage-induced cracks and its influence on the diffusion properties of concrete. An experimental setup of restrained slabs was utilized to induce the shrinkage cracks, and the geometry characteristics were quantified with image analysis technology. The results indicated the depth-width scaling λ of shrinkage cracks increases with crack width and was almost constant when the crack width was approximately 0.3 mm or more, and the tip angle of shrinkage cracks is about 1-2 degrees. The diffusion coefficients of concretes were measured by a conductivity test method. A series-parallel composite model with λ was devised to evaluate the diffusivity of shrinking cracked concrete. It was shown that the equivalent diffusion coefficient depended greatly on the crack depth instead of the crack width, and it was found to be a nonlinear relationship versus the width combining with λ. The diffusion coefficient of the crack Dcr was correlated to both crack width and λ, and increased with crack width. When the crack width is higher than 0.2 mm Dcr becomes constant, where the value obtained was 87% of the diffusion coefficient in free solution.

4.
Materials (Basel) ; 12(14)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336925

RESUMO

In this paper, slag is used as a calcium source to make alkali-activated coal gangue-slag (AACGS) based material. The reaction mechanism of AACGS materials was discussed in depth by means of XRD, FT-IR, 29Si MAS-NMR (nuclear magnetic resonance) and SEM-EDS (energy dispersive spectrometer). The experimental results show that coal gangue can be used as a raw material for preparing alkali-activated materials. The liquid-solid ratio is the most influential factor on AACGS paste fluidity and strength, followed by slag content. As the modulus of sodium hydroxide increases, the depolymerization process of the reactant precursor is accelerated, but the high sodium hydroxide concentration inhibits the occurrence of the early coal gangue-slag polycondensation reaction, and exerts little effect on the 28 d compressive strength. Ca2+ in the slag promotes exchange with Na+, and the product is converted from N-A-S-H gel to C-(A)-S-H gel, and C-(A)-S-H is formed with higher Ca/Si ratio with the increase of slag content. The slight replacement of coal gangue by slag can greatly improve the reaction process and the strength of AACGS materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa