Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EMBO J ; 39(16): e103009, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32720716

RESUMO

Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11-positive recycling endosomal MVBs. Release of Rab11-positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth-promoting activity, which is also observed in vitro, is Rab11a-dependent, involves ERK-MAPK-signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro-tumorigenic functions, which we propose promote stress-induced tumour adaptation.


Assuntos
Proliferação de Células , Exossomos , Glutamina/deficiência , Sistema de Sinalização das MAP Quinases , Neoplasias , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495334

RESUMO

Seminal fluid plays an essential role in promoting male reproductive success and modulating female physiology and behavior. In the fruit fly, Drosophila melanogaster, Sex Peptide (SP) is the best-characterized protein mediator of these effects. It is secreted from the paired male accessory glands (AGs), which, like the mammalian prostate and seminal vesicles, generate most of the seminal fluid contents. After mating, SP binds to spermatozoa and is retained in the female sperm storage organs. It is gradually released by proteolytic cleavage and induces several long-term postmating responses, including increased ovulation, elevated feeding, and reduced receptivity to remating, primarily signaling through the SP receptor (SPR). Here, we demonstrate a previously unsuspected SPR-independent function for SP. We show that, in the AG lumen, SP and secreted proteins with membrane-binding anchors are carried on abundant, large neutral lipid-containing microcarriers, also found in other SP-expressing Drosophila species. These microcarriers are transferred to females during mating where they rapidly disassemble. Remarkably, SP is a key microcarrier assembly and disassembly factor. Its absence leads to major changes in the seminal proteome transferred to females upon mating. Males expressing nonfunctional SP mutant proteins that affect SP's binding to and release from sperm in females also do not produce normal microcarriers, suggesting that this male-specific defect contributes to the resulting widespread abnormalities in ejaculate function. Our data therefore reveal a role for SP in formation of seminal macromolecular assemblies, which may explain the presence of SP in Drosophila species that lack the signaling functions seen in Dmelanogaster.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipídeos/química , Microesferas , Sêmen/química , Animais , Proteínas de Drosophila/genética , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Mutação/genética , Proteoma/metabolismo , Comportamento Sexual Animal , Especificidade da Espécie
3.
Br J Cancer ; 124(2): 494-505, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028955

RESUMO

BACKGROUND: Glutamine (Gln) is an abundant nutrient used by cancer cells. Breast cancers cells and particularly triple-receptor negative breast cancer (TNBC) are reported to be dependent on Gln to produce the energy required for survival and proliferation. Despite intense research on the role of the intracellular Gln pathway, few reports have focussed on Gln transporters in breast cancer and TNBC. METHODS: The role and localisation of the Gln transporter SLC38A2/SNAT2 in response to Gln deprivation or pharmacological stresses was examined in a panel of breast cancer cell lines. Subsequently, the effect of SLC38A2 knockdown in Gln-sensitive cell lines was analysed. The prognostic value of SLC38A2 in a cohort of breast cancer was determined by immunohistochemistry. RESULTS: SLC38A2 was identified as a strongly expressed amino acid transporter in six breast cancer cell lines. We confirmed an autophagic route of degradation for SLC38A2. SLC38A2 knockdown decreased Gln consumption, inhibited cell growth, induced autophagy and led to ROS production in a subgroup of Gln-sensitive cell lines. High expression of SLC38A2 protein was associated with poor breast cancer specific survival in a large cohort of patients (p = 0.004), particularly in TNBC (p = 0.02). CONCLUSIONS: These results position SLC38A2 as a selective target for inhibiting growth of Gln-dependent breast cancer cell lines.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Glutamina/metabolismo , Estresse Oxidativo/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico
4.
PLoS Genet ; 12(10): e1006366, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27727275

RESUMO

Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic ß-cells, BMP signalling is also implicated in the control of secretion.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Vesículas Secretórias/genética , Animais , Comunicação Autócrina/genética , Proteínas de Drosophila/biossíntese , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Neurônios/metabolismo , Próstata/crescimento & desenvolvimento , Próstata/metabolismo , Vesículas Secretórias/metabolismo , Comportamento Sexual Animal/fisiologia , Transdução de Sinais/genética
5.
J Extracell Vesicles ; 13(6): e12465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887984

RESUMO

Exosomes are secreted vesicles made intracellularly in the endosomal system. We have previously shown that exosomes are not only made in late endosomes, but also in recycling endosomes marked by the monomeric G-protein Rab11a. These vesicles, termed Rab11a-exosomes, are preferentially secreted under nutrient stress from several cancer cell types, including HCT116 colorectal cancer (CRC) cells. HCT116 Rab11a-exosomes have particularly potent signalling activities, some mediated by the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). Mutant activating forms of KRAS, a downstream target of EGFR, are often found in advanced CRC. When absent, monoclonal antibodies, such as cetuximab, which target the EGFR and block the effects of EGFR ligands, such as AREG, can be administered. Patients, however, inevitably develop resistance to cetuximab, either by acquiring KRAS mutations or via non-genetic microenvironmental changes. Here we show that nutrient stress in several CRC cell lines causes the release of AREG-carrying Rab11a-exosomes. We demonstrate that while soluble AREG has no effect, much lower levels of AREG bound to Rab11a-exosomes from cetuximab-resistant KRAS-mutant HCT116 cells, can suppress the effects of cetuximab on KRAS-wild type Caco-2 CRC cells. Using neutralising anti-AREG antibodies and an intracellular EGFR kinase inhibitor, we show that this effect is mediated via AREG activation of EGFR, and not transfer of activated KRAS. Therefore, presentation of AREG on Rab11a-exosomes affects its ability to compete with cetuximab. We propose that this Rab11a-exosome-mediated mechanism contributes to the establishment of resistance in cetuximab-sensitive cells and may explain why in cetuximab-resistant tumours only some cells carry mutant KRAS.


Assuntos
Anfirregulina , Cetuximab , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Exossomos , Proteínas rab de Ligação ao GTP , Humanos , Anfirregulina/metabolismo , Cetuximab/farmacologia , Exossomos/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Proteínas rab de Ligação ao GTP/metabolismo , Receptores ErbB/metabolismo , Células HCT116 , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Estresse Fisiológico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/efeitos dos fármacos
6.
J Extracell Vesicles ; 12(3): e12311, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36872252

RESUMO

Exosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in late Rab7-positive multivesicular endosomes, and also in recycling Rab11a-positive endosomes, particularly under some forms of nutrient stress. The core proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) participate in exosome biogenesis and ILV-mediated destruction of ubiquitinylated cargos. Accessory ESCRT-III components have reported roles in ESCRT-III-mediated vesicle scission, but their precise functions are poorly defined. They frequently only appear essential under stress. Comparative proteomics analysis of human small extracellular vesicles revealed that accessory ESCRT-III proteins, CHMP1A, CHMP1B, CHMP5 and IST1, are increased in Rab11a-enriched exosome preparations. We show that these proteins are required to form ILVs in Drosophila secondary cell recycling endosomes, but unlike core ESCRTs, they are not involved in degradation of ubiquitinylated proteins in late endosomes. Furthermore, CHMP5 knockdown in human HCT116 colorectal cancer cells selectively inhibits Rab11a-exosome production. Accessory ESCRT-III knockdown suppresses seminal fluid-mediated reproductive signalling by secondary cells and the growth-promoting activity of Rab11a-exosome-containing EVs from HCT116 cells. We conclude that accessory ESCRT-III components have a specific, ubiquitin-independent role in Rab11a-exosome generation, a mechanism that might be targeted to selectively block pro-tumorigenic activities of these vesicles in cancer.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Endossomos , Transporte Biológico , Complexos Endossomais de Distribuição Requeridos para Transporte
7.
Dev Cell ; 10(5): 601-13, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16678775

RESUMO

In Drosophila, posterior deposition of oskar (osk) mRNA in oocytes is critical for both pole cell and abdomen formation. Exon junction complex components, translational regulation factors, and other proteins form an RNP complex that is essential for directing osk mRNA to the posterior of the oocyte. Until now, it has not been clear whether the mRNA degradation machinery is involved in regulating osk mRNA deposition. Here we show that Drosophila decapping protein 1, dDcp1, is a posterior group gene required for the transport of osk mRNA. In oocytes, dDcp1 is localized posteriorly in an osk mRNA position- and dosage-dependent manner. In nurse cells, dDcp1 colocalizes with dDcp2 and Me31B in discrete foci that may be related to processing bodies (P bodies), which are sites of active mRNA degradation. Thus, as well as being a general factor required for mRNA decay, dDcp1 is an essential component of the osk mRNP localization complex.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Oócitos/metabolismo , Ribonucleoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Caspases , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/citologia , Proteínas do Ovo/metabolismo , Genes de Insetos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/química , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
9.
Front Pharmacol ; 9: 640, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971004

RESUMO

Solute Carriers (SLCs) are involved in the transport of substances across lipid bilayers, including nutrients like amino acids. Amino acids increase the activity of the microenvironmental sensor mechanistic Target of Rapamycin Complex 1 (mTORC1) to promote cellular growth and anabolic processes. They can be brought in to cells by a wide range of SLCs including the closely related Proton-assisted Amino acid Transporter (PAT or SLC36) and Sodium-coupled Neutral Amino acid Transporter (SNAT or SLC38) families. More than a decade ago, the first evidence emerged that members of the PAT family can act as amino acid-stimulated receptors, or so-called "transceptors," connecting amino acids to mTORC1 activation. Since then, further studies in human cell models have suggested that other PAT and SNAT family members, which share significant homology within their transmembrane domains, can act as transceptors. A paradigm shift has also led to the PATs and SNATs at the surface of multiple intracellular compartments being linked to the recruitment and activation of different pools of mTORC1. Much focus has been on late endosomes and lysosomes as mTORC1 regulatory hubs, but more recently a Golgi-localized PAT was shown to be required for mTORC1 activation. PATs and SNATs can also traffic between the cell surface and intracellular compartments, with regulation of this movement providing a means of controlling their mTORC1 regulatory activity. These emerging features of PAT and SNAT amino acid sensors, including the transceptor mechanism, have implications for the pharmacological inhibition of mTORC1 and new therapeutic interventions.

10.
PLoS One ; 10(11): e0143818, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26599788

RESUMO

Insulin/insulin-like growth factor signalling (IIS), acting primarily through the PI3-kinase (PI3K)/AKT kinase signalling cassette, plays key evolutionarily conserved regulatory roles in nutrient homeostasis, growth, ageing and longevity. The dysfunction of this pathway has been linked to several age-related human diseases including cancer, Type 2 diabetes and neurodegenerative disorders. However, it remains unclear whether minor defects in IIS can independently induce the age-dependent functional decline in cells that accompany some of these diseases or whether IIS alters the sensitivity to other aberrant signalling. We identified a novel hypomorphic allele of PI3K's direct antagonist, Phosphatase and tensin homologue on chromosome 10 (Pten), in the fruit fly, Drosophila melanogaster. Adults carrying combinations of this allele, Pten5, combined with strong loss-of-function Pten mutations exhibit subtle or no increase in mass, but are highly susceptible to a wide range of stresses. They also exhibit dramatic upregulation of the oxidative stress response gene, GstD1, and a progressive loss of motor function that ultimately leads to defects in climbing and flight ability. The latter phenotype is associated with mitochondrial disruption in indirect flight muscles, although overall muscle structure appears to be maintained. We show that the phenotype is partially rescued by muscle-specific expression of the Bcl-2 homologue Buffy, which in flies, maintains mitochondrial integrity, modulates energy homeostasis and suppresses cell death. The flightless phenotype is also suppressed by mutations in downstream IIS signalling components, including those in the mechanistic Target of Rapamycin Complex 1 (mTORC1) pathway, suggesting that elevated IIS is responsible for functional decline in flight muscle. Our data demonstrate that IIS levels must be precisely regulated by Pten in adults to maintain the function of the highly metabolically active indirect flight muscles, offering a new system to study the in vivo roles of IIS in the maintenance of mitochondrial integrity and adult ageing.


Assuntos
Proteínas de Drosophila/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
11.
J Cell Biol ; 206(5): 671-88, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25154396

RESUMO

Male reproductive glands secrete signals into seminal fluid to facilitate reproductive success. In Drosophila melanogaster, these signals are generated by a variety of seminal peptides, many produced by the accessory glands (AGs). One epithelial cell type in the adult male AGs, the secondary cell (SC), grows selectively in response to bone morphogenetic protein (BMP) signaling. This signaling is involved in blocking the rapid remating of mated females, which contributes to the reproductive advantage of the first male to mate. In this paper, we show that SCs secrete exosomes, membrane-bound vesicles generated inside late endosomal multivesicular bodies (MVBs). After mating, exosomes fuse with sperm (as also seen in vitro for human prostate-derived exosomes and sperm) and interact with female reproductive tract epithelia. Exosome release was required to inhibit female remating behavior, suggesting that exosomes are downstream effectors of BMP signaling. Indeed, when BMP signaling was reduced in SCs, vesicles were still formed in MVBs but not secreted as exosomes. These results demonstrate a new function for the MVB-exosome pathway in the reproductive tract that appears to be conserved across evolution.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Proteínas de Drosophila/fisiologia , Exossomos/fisiologia , Genitália Masculina/metabolismo , Animais , Drosophila melanogaster , Células Epiteliais/metabolismo , Feminino , Genitália Feminina/citologia , Lisossomos/metabolismo , Masculino , Fusão de Membrana , Microdomínios da Membrana/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Proteico , Vesículas Secretórias/metabolismo , Comportamento Sexual Animal , Transdução de Sinais , Espermatozoides/metabolismo , Tetraspanina 30/metabolismo , Vacúolos/metabolismo
12.
PLoS One ; 6(5): e20612, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21655181

RESUMO

mRNA localization coupled with translational control is a widespread and conserved strategy that allows the localized production of proteins within eukaryotic cells. In Drosophila, oskar (osk) mRNA localization and translation at the posterior pole of the oocyte are essential for proper patterning of the embryo. Several P body components are involved in osk mRNA localization and translational repression, suggesting a link between P bodies and osk RNPs. In cultured mammalian cells, Ge-1 protein is required for P body formation. Combining genetic, biochemical and immunohistochemical approaches, we show that, in vivo, Drosophila Ge-1 (dGe-1) is an essential gene encoding a P body component that promotes formation of these structures in the germline. dGe-1 partially colocalizes with osk mRNA and is required for osk RNP integrity. Our analysis reveals that although under normal conditions dGe-1 function is not essential for osk mRNA localization, it becomes critical when other components of the localization machinery, such as staufen, Drosophila decapping protein 1 and barentsz are limiting. Our findings suggest an important role of dGe-1 in optimization of the osk mRNA localization process required for patterning the Drosophila embryo.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , RNA Mensageiro/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Caspases , Drosophila/genética , Proteínas de Drosophila/genética , Imunoprecipitação , Hibridização in Situ Fluorescente , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa