Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Lasers Med Sci ; 38(1): 71, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790539

RESUMO

Photobiomodulation (PBM) is the use of low irradiance light of specific wavelengths to generate physiological changes and therapeutic effects. However, there are few studies on the effects of PBM of different LED light modes on cells. Here, we investigated the difference of influence between continuous wave (CW) and pulse-PBM on B16F10 melanoma cells. Our results suggested that the pulse mode had a more significant PBM than the CW mode on B16F10 melanoma cells. Our study confirmed that ROS and Ca2+ levels in B16F10 melanoma cells treated with pulse-PBM were significantly higher than those in the control and CW-PBM groups. One mechanism that causes the difference in CW and pulse-PBM action is that pulse-PBM activates autophagy of melanoma cells through the ROS/OPN3/Ca2+ signaling pathway, and excessive autophagy activation inhibits proliferation and apoptosis of melanoma cells. Autophagy may be one of the reasons for the difference between pulse- and CW-PBM on melanoma cells. More importantly, melanoma cells responded to brief PBM pulses by increasing intracellular Ca2+ levels.


Assuntos
Terapia com Luz de Baixa Intensidade , Melanoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Autofagia , Melanoma/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , Opsinas de Bastonetes
2.
Mol Biol Evol ; 38(11): 5066-5081, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34329477

RESUMO

Domestication and breeding have reshaped the genomic architecture of chicken, but the retention and loss of genomic elements during these evolutionary processes remain unclear. We present the first chicken pan-genome constructed using 664 individuals, which identified an additional approximately 66.5-Mb sequences that are absent from the reference genome (GRCg6a). The constructed pan-genome encoded 20,491 predicated protein-coding genes, of which higher expression levels are observed in conserved genes relative to dispensable genes. Presence/absence variation (PAV) analyses demonstrated that gene PAV in chicken was shaped by selection, genetic drift, and hybridization. PAV-based genome-wide association studies identified numerous candidate mutations related to growth, carcass composition, meat quality, or physiological traits. Among them, a deletion in the promoter region of IGF2BP1 affecting chicken body size is reported, which is supported by functional studies and extra samples. This is the first time to report the causal variant of chicken body size quantitative trait locus located at chromosome 27 which was repeatedly reported. Therefore, the chicken pan-genome is a useful resource for biological discovery and breeding. It improves our understanding of chicken genome diversity and provides materials to unveil the evolution history of chicken domestication.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Tamanho Corporal/genética , Galinhas/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Locos de Características Quantitativas
3.
Opt Express ; 26(8): 10371-10381, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715974

RESUMO

The self-mixing technique based on the traditional reflecting mirror has been demonstrated with great merit for angle sensing applications. In order to solve the problems of the narrow measurement angle range and low resolution in traditional angle measurement method, we proposed an angle measurement system using orthogonal mirror self-mixing interferometry combine an orthogonal mirror with designed mechanical linkage. It overcomes the shortcomings of traditional angle measurement methods and realized the angle measurement with microradian resolution in a full-circle range of 0 rad to 2π rad. In the experiment, the measurement resolution can reach to 5.27 µrad and the absolute error can lower to ± 0.011µrad, which satisfies the requirements of most high accuracy angle measurement.

4.
J Photochem Photobiol B ; 257: 112962, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917720

RESUMO

Pulsed light illumination stands out as a noteworthy technique for photosynthetic H2 production, playing a crucial role in eliminating O2 and activating hydrogenase enzymes. However, further improvements are essential to make H2 photoproduction suitable for future commercial applications. In our study, we observed a distinct enhancement in pulsed light-induced H2 photoproduction in the unicellular green alga Chlamydomonas reinhardtii when treated with the optimal concentration of the mild O2 scavenger Na2SO3. This improvement was a result of reduced O2 content, increased hydrogenase enzyme activity, and suppressed H2-uptake activity. Furthermore, our findings indicate that exposing Na2SO3-treated C. reinhardtii to optimal light waveform continues to significantly boost pulsed light-induced H2 photoproduction, attributed to the alleviation of impaired photosystem II activity. Altogether, the combined application of optimal sulfite concentration and light waveform effectively enhances pulsed light-induced photosynthetic H2 production in the green alga C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii , Hidrogênio , Luz , Complexo de Proteína do Fotossistema II , Sulfitos , Sulfitos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/efeitos da radiação , Chlamydomonas reinhardtii/efeitos dos fármacos , Hidrogênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Oxigênio/metabolismo , Hidrogenase/metabolismo
5.
Genes (Basel) ; 15(1)2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38254930

RESUMO

Improving the efficiency of hens and extending the egg-laying cycle require maintaining high egg production in the later stages. The ovarian follicles, as the primary functional units for ovarian development and oocyte maturation, play a crucial role in regulating the continuous ovulation of hens. The egg production rate of laying hens is mostly affected by proper follicle growth and ovulation in the ovaries. The objective of this study was to identify the key genes and signaling pathways involved in the development of ovarian follicles in Taihang hens through transcriptome screening. In this study, RNA sequencing was used to compare and analyze the transcriptomes of ovarian follicles at four developmental stages: small white follicles (SWF), small yellow follicles (SYF), F5 follicles, and F2 follicles, from two groups: the high continual production group (H-Group) and the low continual production group (L-Group). A total of 24 cDNA libraries were constructed, and significant differential expression of 96, 199, 591, and 314 mRNAs was detected in the SWF, SYF, F5, and F2 follicles of the H and L groups, respectively. Based on the results of GO and KEGG enrichment analyses, each stage of follicle growth possesses distinct molecular genetic features, which have important effects on follicle development and significantly promote the formation of continuous production traits through the biosynthesis of steroid hormones, cytokine-cytokine receptor interaction, and neuroactive ligand-receptor interaction. Additionally, through STEM analysis, we identified 59 DEGs, including ZP4, KCNH1, IGFs, HMGA2, and CDH1, potentially associated with follicular development within four significant modules. This study represents the first transcriptome investigation of follicles in hens with high and low egg-producing characteristics at four crucial developmental stages. These findings provide important molecular evidence for understanding the regulation of follicular development and its variations.


Assuntos
Galinhas , Folículo Ovariano , Animais , Feminino , Galinhas/genética , Ovário , Ovulação/genética , Citocinas
6.
Environ Sci Pollut Res Int ; 29(18): 26214-26229, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34851485

RESUMO

The Pan-Third Pole (PTP) region, which encompasses the Eurasian highlands and their surroundings, has experienced unprecedented, accelerated warming during the past decades. This study evaluates the performance of historical simulation runs of the Coupled Model Intercomparison Project (CMIP6) in capturing spatial patterns and temporal variations observed over the PTP region for mean and extreme temperatures. In addition, projected changes in temperatures under four Shared Socioeconomic Pathway (SSP) scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are also reported. Four indices were used to characterize changes in temperature extremes: the annual maximum value of daily maximum temperature (TXx), the annual minimum value of daily minimum temperature (TNn), and indices for the percentage of warm days (TX90p) and warm nights (TN90p). Results indicate that most CMIP6 models generally capture the characteristics of the observed mean and extreme temperatures over the PTP region, but there still are slight cold biases in the Tibetan Plateau. Future changes of mean and extreme temperatures demonstrate that a strong increase will occur for the entire PTP region during the twenty-first century under all four SSP scenarios. Between 2015 and 2099, ensemble area-averaged annual mean temperatures are projected to increase by 1.24 °C/100 year, 3.28 °C/100 year, 5.57 °C/100 year, and 7.40 °C/100 year for the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. For TXx and TNn, the most intense warming is projected in Central Asia. The greatest number of projected TX90p and TN90p will occur in the Southeast Asia and Tibetan Plateau, respectively.


Assuntos
Mudança Climática , Temperatura Alta , Temperatura Baixa , Previsões , Temperatura
7.
Geohealth ; 5(5): e2021GH000390, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027262

RESUMO

Compound climate extremes, such as events with concurrent temperature and precipitation extremes, have significant impacts on the health of humans and ecosystems. This paper aims to analyze temporal and spatial characteristics of compound extremes of monthly temperature and precipitation, evaluate the performance of the sixth phase of the Coupled Model Intercomparison Project (CMIP6) models in simulating compound extremes, and investigate their future changes under Shared Socioeconomic Pathways (SSPs). The results show a significant increase in the frequency of compound warm extremes (warm/dry and warm/wet) but a decrease in compound cold extremes (cold/dry and cold/wet) during 1985-2014 relative to 1955-1984. The observed upward trends of compound warm extremes over China are much higher than those worldwide during the period of interest. A multi-model ensemble (MME) of CMIP6 models performs well in simulating temporal changes of warm/wet extremes, and temporal correlation coefficients between MME and observations are above 0.86. Under future scenarios, CMIP6 simulations show substantial rises in compound warm extremes and declines in compound cold extremes. Globally, the average frequency of warm/wet extremes over a 30-yr period is projected to increase for 2070-2099 relative to 1985-2014 by 18.53, 34.15, 48.79, and 59.60 under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively. Inter-model uncertainties for the frequencies of compound warm extremes are considerably higher than those of compound cold extremes. The projected uncertainties in the global occurrences of warm/wet extremes are 3.82 times those of warm/dry extremes during 2070-2099 and especially high for the Amazon and the Tibetan Plateau.

8.
J Photochem Photobiol B ; 216: 112127, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33517070

RESUMO

Cutaneous melanoma is one of the aggressive cancers. Recent studies have shown that Photobiomodulation (PBM) can inhibit the proliferation of melanoma cells. However, it is not clear that the effect of PBM light mode on the inhibition of melanoma cells. Herein, we investigated the difference of influence between continuous wave (CW) and Pulse PBM on B16F10 melanoma cells. Our results suggested that Pulse mode had a more significant inhibition on the viability of B16F10 melanoma cells than CW mode under the PBM light parameter of wavelength, dose, and average irradiance at 457 nm, 1.14 J/cm2, and 0.19 mW/cm2. Besides, we revealed the differentially expressed genes of B16F10 melanoma cells under the various treatments of PBM light mode (not PBM treatment, CW mode, and Pulse mode) by RNA sequencing. Together, our data suggested that Pulse-PBM can improve the effect of PBM on cells significantly and there may be different molecular mechanisms between Pulse and CW mode including anti-proliferative and cell necrosis. The study shed new light on investigating the molecular mechanisms of various PBM light modes on B16F10 melanoma cells.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Fatores Imunológicos/metabolismo , Melanoma/radioterapia , Neoplasias Cutâneas/radioterapia , Transcriptoma/efeitos da radiação , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica , Humanos , Luz , Terapia com Luz de Baixa Intensidade , Melanoma Maligno Cutâneo
9.
Chronobiol Int ; 38(12): 1776-1785, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34348552

RESUMO

As the largest organ exposed to the outside of mammals, skin has direct photosensitivity. Recent studies have even shown that cutaneous irradiation played a role in local circadian systems. However, whether it can further affect the central clock system is controversial. Here, plasm melatonin rhythm of melatonin-proficient C3H/He mice was assessed, and on this basis, a well-designed segmented lighting method was used to investigate the effects of dorsal skin irradiation on locomotor activity and plasm melatonin content in male C3H/He mice. In brief, mice were separately exposed to cutaneous irradiation, intraocular irradiation or darkness for 60 min at specific moments. The results showed that neither blue nor red cutaneous exposure had obvious effect on central rhythm oscillation while intraocular irradiation could significantly change the central clock of mice, and the effect of blue light was more forceful than red light. It suggests that intraocular nonvisual channels still play a dominant role in rhythmic regulation, which has not been challenged by the discovery of local light entrainment in exposed peripheral tissues.


Assuntos
Melatonina , Animais , Ritmo Circadiano , Luz , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C3H
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa