Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901991

RESUMO

Skeletal muscle-fat interaction is essential for maintaining organismal energy homeostasis and managing obesity by secreting cytokines and exosomes, but the role of the latter as a new mediator in inter-tissue communication remains unclear. Recently, we discovered that miR-146a-5p was mainly enriched in skeletal muscle-derived exosomes (SKM-Exos), 50-fold higher than in fat exosomes. Here, we investigated the role of skeletal muscle-derived exosomes regulating lipid metabolism in adipose tissue by delivering miR-146a-5p. The results showed that skeletal muscle cell-derived exosomes significantly inhibited the differentiation of preadipocytes and their adipogenesis. When the skeletal muscle-derived exosomes co-treated adipocytes with miR-146a-5p inhibitor, this inhibition was reversed. Additionally, skeletal muscle-specific knockout miR-146a-5p (mKO) mice significantly increased body weight gain and decreased oxidative metabolism. On the other hand, the internalization of this miRNA into the mKO mice by injecting skeletal muscle-derived exosomes from the Flox mice (Flox-Exos) resulted in significant phenotypic reversion, including down-regulation of genes and proteins involved in adipogenesis. Mechanistically, miR-146a-5p has also been demonstrated to function as a negative regulator of peroxisome proliferator-activated receptor γ (PPARγ) signaling by directly targeting growth and differentiation factor 5 (GDF5) gene to mediate adipogenesis and fatty acid absorption. Taken together, these data provide new insights into the role of miR-146a-5p as a novel myokine involved in the regulation of adipogenesis and obesity via mediating the skeletal muscle-fat signaling axis, which may serve as a target for the development of therapies against metabolic diseases, such as obesity.


Assuntos
Exossomos , MicroRNAs , Camundongos , Animais , PPAR gama/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , MicroRNAs/genética , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Exossomos/metabolismo , Fator 5 de Diferenciação de Crescimento/metabolismo
2.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36287029

RESUMO

Accumulating evidence has demonstrated that diet-derived gut microbiota participates in the regulation of host metabolism and becomes the foundation for precision-based nutritional interventions and the biomarker for potential individual dietary recommendations. However, the specific mechanism of the gut microbiota-host crosstalk remains unclear. Recent studies have identified that noncoding RNAs, as important elements in the regulation of the initiation and termination of gene expression, mediate microbiota-host communication. Besides, the cross-kingdom regulation of non-host derived microRNAs also influence microbiota-host crosstalk via diet motivation. Hence, understanding the relationship between gut microbiota, miRNAs, and host metabolism is indispensable to revealing individual differences in dietary motivation and providing targeted recommendations and strategies. In this review, we first present an overview of the interaction between diet, host genetics, and gut microbiota and collected some latest research associated with microRNAs modulated gut microbiota and intestinal homeostasis. Then, specifically described the possible molecular mechanisms of microRNAs in sensing and regulating gut microbiota-host crosstalk. Lastly, summarized the prospect of microRNAs as biomarkers in disease diagnosis, and the disadvantages of microRNAs in regulating gut microbiota-host crosstalk. We speculated that microRNAs could become potential novel circulating biomarkers for personalized dietary strategies to achieve precise nutrition in future clinical research implications.

3.
J Appl Microbiol ; 132(4): 2661-2672, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104035

RESUMO

AIMS: To explore the impact of ambient pH on lactate catabolism by Megasphaera elsdenii BE2-2083 and Selenomonas ruminantium HD4 in both pure culture and in binary mixed culture. METHODS AND RESULTS: The growth rate, substrate consumption, product formation, enzymatic activity and gene expression of M. elsdenii and S. ruminantium at various pHs were examined. Furthermore, the metabolism of lactate catabolism pathways for M. elsdenii and S. ruminantium in the co-culture system was investigated by chasing the conversion of sodium L-[3-13 C]-lactate in nuclear magnetic resonance. In the pure culture systems, ambient pH had significant effects on the growth of M. elsdenii, whereas S. ruminantium was less sensitive to pH changes. In addition, lactate metabolic genes and activities of key enzymes were affected by ambient pH in M. elsdenii and S. ruminantium. In the co-culture system, low ambient pH reduced the contribution lactate catabolism by M. elsdenii. CONCLUSION: M. elsdenii BE2-2083 and S. ruminantium HD4 lactate degradation affected by ambient pH. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the regulatory mechanisms of lactate decomposing bacteria in lactate catabolism under the condition of subacute ruminal acidosis.


Assuntos
Acidose , Selenomonas , Acidose/veterinária , Animais , Ácido Láctico/metabolismo , Megasphaera elsdenii/metabolismo , Rúmen/microbiologia , Selenomonas/genética , Selenomonas/metabolismo
4.
BMC Microbiol ; 21(1): 344, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911440

RESUMO

BACKGROUND: Catabolite control protein A (CcpA) regulates the transcription of lactate dehydrogenase and pyruvate formate-lyase in Streptococcus bovis, but knowledge of its role in response to different pH is still limited. In this study, a ccpA-knockout strain of S. bovis S1 was constructed and then used to examine the effects of ccpA gene deletion on the growth and fermentation characteristics of S. bovis S1 at pH 5.5 or 6.5. RESULTS: There was a significant interaction between strain and pH for the maximum specific growth rate (µmax) and growth lag period (λ), which caused a lowest µmax and a longest λ in ccpA-knockout strain at pH 5.5. Deletion of ccpA decreased the concentration and molar percentage of lactic acid, while increased those of formic acid. Strains at pH 5.5 had decreased concentrations of lactic acid and formic acid compared to pH 6.5. The significant interaction between strain and pH caused the highest production of total organic acids and acetic acid in ccpA-knockout strain at pH 6.5. The activities of α-amylase and lactate dehydrogenase decreased in ccpA-knockout strain compared to the wild-type strain, and increased at pH 5.5 compared to pH 6.5. There was a significant interaction between strain and pH for the activity of acetate kinase, which was the highest in the ccpA-knockout strain at pH 6.5. The expression of pyruvate formate-lyase and acetate kinase was higher in the ccpA-knockout strain compared to wild-type strain. The lower pH improved the relative expression of pyruvate formate-lyase, while had no effect on the relative expression of acetate kinase. The strain × pH interaction was significant for the relative expression of lactate dehydrogenase and α-amylase, both of which were highest in the wild-type strain at pH 5.5 and lowest in the ccpA-knockout strain at pH 6.5. CONCLUSIONS: Overall, low pH inhibited the growth of S. bovis S1, but did not affect the fermentation pattern. CcpA regulated S. bovis S1 growth and organic acid fermentation pattern. Moreover, there seemed to be an interaction effect between pH and ccpA deletion on regulating the growth and organic acids production of S. bovis S1.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Repressoras/metabolismo , Streptococcus bovis/crescimento & desenvolvimento , Streptococcus bovis/metabolismo , Acetato Quinase/genética , Acetato Quinase/metabolismo , Acetiltransferases/metabolismo , Amilases/genética , Amilases/metabolismo , Animais , Proteínas de Bactérias/genética , Ácidos Carboxílicos/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Mutação , Proteínas Repressoras/genética , Ruminantes/microbiologia
5.
J Nutr ; 151(4): 1038-1046, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33693729

RESUMO

BACKGROUND: Previous studies demonstrated that dietary l-arginine (Arg) alters the equilibrium between reactive oxygen species (ROS) generation and biological defenses to resist oxidant-induced toxicity. Whether supplying Arg can protect ovine intestinal epithelial cells (OIECs) from hydrogen peroxide (H2O2)-induced oxidative damage is unclear. OBJECTIVES: The current study aimed to examine the effect of Arg on mitophagy, mitochondrial dysfunction, and apoptosis induced by H2O2 in OIECs. METHODS: The OIECs were incubated in Arg-free DMEM supplemented with 100 µM Arg (CON) or 350 µM Arg (ARG) alone or with 150 µM H2O2 (CON + H2O2, ARG + H2O2) for 24 h. Cellular apoptosis, mitochondrial function, autophagy, and the related categories of genes and proteins were determined. All data were analyzed by ANOVA using the general linear model procedures of SAS (SAS Institute) for a 2 × 2 factorial design. RESULTS: Relative to the CON and ARG groups, H2O2 administration resulted in 44.9% and 26.5% lower (P < 0.05) cell viability but 34.7% and 61.8% greater (P < 0.05) ROS concentration in OIECs, respectively. Compared with the CON and CON + H2O2 groups, Arg supplementation led to 40.7% and 28.8% lower (P < 0.05) ROS concentration but 14.9%-49.0% and 29.3%-64.1% greater (P < 0.05) mitochondrial membrane potential, relative mitochondrial DNA content, and complex (I-IV) activity in OIECs, respectively. Compared with the CON and CON + H2O2 groups, Arg supplementation led to 33.9%-53.1% and 22.4%-49.1% lower (P < 0.05) mRNA abundance of proapoptotic genes, respectively. Relative to the CON and CON + H2O2 groups, Arg supplementation resulted in 33.0%-59.2% and 14.6%-37.7% lower (P < 0.05) abundance of proapoptotic, mitophagy, and cytoplasmic cytochrome c protein, respectively. CONCLUSIONS: Supply of Arg protects OIECs against H2O2-induced damage partly by improving mitochondrial function and alleviating cellular apoptosis and autophagy.


Assuntos
Arginina/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Cultivadas , DNA Mitocondrial/metabolismo , Suplementos Nutricionais , Peróxido de Hidrogênio/toxicidade , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ovinos
6.
Mediators Inflamm ; 2020: 2453537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322162

RESUMO

L-arginine (Arg) is a semiessential amino acid with several physiological functions. N-Carbamylglutamate (NCG) can promote the synthesis of endogenous Arg in mammals. However, the roles of Arg or NCG on hepatic inflammation and apoptosis in suckling lambs suffering from intrauterine growth restriction (IUGR) are still unclear. The current work is aimed at examining the effects of dietary Arg and NCG on inflammatory and hepatocyte apoptosis in IUGR suckling lambs. On day 7 after birth, 48 newborn Hu lambs were selected from a cohort of 432 twin lambs. Normal-birthweight and IUGR Hu lambs were allocated randomly (n = 12/group) to control (CON), IUGR, IUGR+1% Arg, or IUGR+0.1% NCG groups. Lambs were fed for 21 days from 7 to 28 days old. Compared with CON lambs, relative protein 53 (P53), apoptosis antigen 1 (Fas), Bcl-2-associated X protein (Bax), caspase-3, cytochrome C, tumor necrosis factor alpha (TNF-α), nuclear factor kappa-B (NF-κB) p65, and NF-κB pp65 protein levels were higher (P < 0.05) in liver from IUGR lambs, whereas those in liver from IUGR lambs under Arg or NCG treatment were lower than those in IUGR lambs. These findings indicated that supplementing Arg or NCG reduced the contents of proinflammatory cytokines at the same time when the apoptosis-related pathway was being suppressed, thus suppressing the IUGR-induced apoptosis of hepatic cells.


Assuntos
Arginina/uso terapêutico , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/metabolismo , Glutamatos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Peso Corporal/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Citocromos c/metabolismo , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Marcação In Situ das Extremidades Cortadas , Fígado/efeitos dos fármacos , Fígado/metabolismo , NF-kappa B/metabolismo , Gravidez , Radioimunoensaio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos , Fator de Necrose Tumoral alfa/metabolismo
7.
Int J Nanomedicine ; 19: 6577-6588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975319

RESUMO

Introduction: Hepatocellular carcinomas (HCC) have a high morbidity and mortality rate, and is difficult to cure and prone to recurrence when it has already developed. Therefore, early detection and efficient treatment of HCC is necessary. Methods: In this study, we synthesized a novel NDI polymer with uniform size, long-term stability, and high near-infrared two-zone (NIR-II) absorption efficiency, which can greatly enhance the effect of photothermal therapy (PTT) after intravenous injection into Huh-7-tumor bearing mice. Results: The in vitro and in vivo studies showed that NDI polymer exhibited excellent NIR-guided PTT treatment, and the antitumor effect was approximately 88.5%, with obvious antimetastatic effects. Conclusion: This study developed an NDI polymer-mediated integrated diagnostic and therapeutic modality for NIR-II fluorescence imaging and photothermal therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Fototérmica , Polímeros , Animais , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Terapia Fototérmica/métodos , Polímeros/química , Camundongos , Humanos , Linhagem Celular Tumoral , Raios Infravermelhos , Camundongos Nus , Imagem Óptica , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Fototerapia/métodos
8.
Int J Biol Macromol ; 261(Pt 2): 129733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307433

RESUMO

The function of miRNAs in intestinal inflammatory injury regulation has been studied extensively. However, the targeted delivery of these functional nucleic acid molecules to specific organs through encapsulation carriers and exerting their functional effects remain critical challenges for further research. Here, we constructed miR-146a-5p overexpression plasmid and validated the anti-inflammatory properties in the cell model. Then, the plasmid was encapsulated by the Pickering double emulsion system to investigate the role of Pickering double emulsion system in LPS-induced acute intestinal inflammatory injury. The results showed that the Pickering double emulsion system could effectively protect the integrity of plasmids in the intestinal tract, alleviate intestinal inflammatory injury, and upregulate the relative abundance of Lactobacillus reuteri. Mechanically, in vivo and in vitro experiments have shown that miR-146a-5p inhibits TLR4/NF-κB pathway to alleviate intestinal inflammation. In addition, miR-146a-5p can also regulate intestinal homeostasis by targeting the RNA polymerase sigma factor RpoD and α-galactosidase A, thereby affecting the growth of Lactobacillus reuteri. Above all, this study reveals a potential mechanism for miR-146a-5p to treat intestinal inflammation and provides a new delivery strategy for miRNAs to regulate intestinal homeostasis.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Humanos , Emulsões , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética
9.
Endocrinology ; 164(8)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37378492

RESUMO

In recent years, there has been a growing interest in the role of extracellular vesicles (EVs) in both normal and pathological physiology. These natural nanoparticles are now recognized as a novel mechanism for intercellular communication, allowing cells to exchange biologically active molecules such as microRNAs (miRNAs). As is well acknowledged, the endocrine system regulates bodily operations through the emission of various hormones. The discovery of EVs took place approximately 80 years after that of hormones; circulating EVs have attracted considerable interest and are expected to be a frontier in the endocrine system. Interestingly, the interplay between hormones and EVs is a complex phenomenon that involves both synergistic and antagonistic effects. Moreover, EVs facilitate communication between endocrine cells and contain miRNAs that may serve as valuable biomarkers for diagnosis and prognosis. This review aims to provide an overview of current research on physiological and pathological secretion of EVs from endocrine organs or tissues. Additionally, we examine the essential relationship between hormones and EVs in the endocrine system.


Assuntos
Vesículas Extracelulares , MicroRNAs , Vesículas Extracelulares/fisiologia , Comunicação Celular/fisiologia , Sistema Endócrino , Hormônios
10.
Front Vet Sci ; 9: 964027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204287

RESUMO

Rumen acidosis is the consequence of feeding rapidly fermentable grain diets and it is considered the most common nutritional disorder in intensive feeding ruminants. Due to that mechanism of catabolism and transformation is driven by multi-factors, the role of ruminal lactate and its contribution to subacute rumen acidosis has not been well defined yet. The aim of this study is to evaluate the effects of SARA on the production, absorption, circulation, and transformation of lactate in the rumen. In this study, rumen samples were collected from 12 adult Saanen goats (44.5 ± 4.6 kg BW) equipped with permanent rumen cannula to measure rumen fermentation parameters, organic acids production, microbial profiles, and blood indicators to identify the occurrence of SARA. To further investigate the change in the disappearance rate of ruminal lactate, rumen fluid was collected and a batch culture was performed. The results showed that the clearance rate of ruminal lactate was accelerated by SARA, and the concentration of the ruminal lactate pool was stable. In addition, the rumen liquid dilution rate and the rumen liquid flow rate under the SARA condition of goats were lower than that in normal conditions. The ruminal lactate flow rate had no difference throughout the process of fermentation. However, in vitro data showed that the disappearance of lactate was reduced in SARA. By measuring the conversion of sodium L-[3-13C]-lactate in batch culture, it was found that the percentage of lactate converted to propionate was significantly lower in the SARA treatment and 16.13% more lactate converted to butyrate under SARA condition. However, the percentage of lactate transformed into acetate and butyrate was significantly increased in the SARA treatment than that of control. The relative population of total protozoa count in SARA was significantly reduced, while the relative population of Lactobacillus fermentum, Streptococcus bovis, Butyrivibrio fibrisolvens, Megasphaera elsdenii, and Selenomonas ruminantium in the SARA treatment was significantly induced (p < 0.05). It is concluded that the transformation of lactate into butyrate may promote the development of SARA. These findings provide some references to the diet formulation for preventing SARA.

11.
J Agric Food Chem ; 70(26): 7981-7992, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35734958

RESUMO

The liver as the central organ is responsible for lipogenesis, gluconeogenesis and one-carbon metabolism. Methyl donors (e.g., betaine) modulate metabolic homeostasis and gene regulation through one-carbon metabolism. MiR-143 regulates DNA methylation by targeting DNMT3A, thereby suggesting that this miRNA participates in one-carbon metabolic pathways. However, the effect and mechanism that regulate glucose and lipid metabolism via the methyl group metabolism pathway remain elusive. In this study, we found that a betaine supplement and miR-143 KO significantly promoted lipolysis and glucose utilization and repressed lipogenesis and gluconeogenesis through enhancing energy consumption and thermogenesis, repressing GPNMB and targeting MAPK11, respectively. We further explored the relationship between miR-143 and a methyl donor (betaine) and the miR-143-mediated responses to the betaine supplement regulating the mechanism of the glucose and lipid metabolism. The results showed that betaine significantly down-regulated the expression of miR-143 that subsequently increased SAM levels in the liver by targeting MAT1a. In brief, the regulations of glucose and lipid metabolism are related to the miR-143-regulation of one-carbon units, and the relationship between betaine and miR-143 in the methionine cycle is a typical yin-yang type of regulation. Thus, betaine and miR-143 function together as key regulators and biomarkers for preventing and diagnosing metabolic diseases such as fatty liver disease, obesity, and diabetes.


Assuntos
Gluconeogênese , MicroRNAs , Betaína/metabolismo , Betaína/farmacologia , Carbono/metabolismo , Gluconeogênese/genética , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Lipogênese , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
12.
Front Microbiol ; 12: 767769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867900

RESUMO

Ruminants may suffer from rumen acidosis when fed with high-concentrate diets due to the higher proliferation and overproduction of lactate by Streptococcus bovis. The catabolite control protein A (CcpA) regulates the transcription of lactate dehydrogenase (ldh) and pyruvate formate-lyase (pfl) in S. bovis, but its role in response to different carbon concentrations remains unclear. To characterize the regulatory mechanisms of CcpA in S. bovis S1 at different levels of carbon, herein, we analyzed the transcriptomic and physiological characteristics of S. bovis S1 and its ccpA mutant strain grown in glucose-excess and glucose-limited conditions. A reduced growth rate and a shift in fermentation pattern from homofermentation to heterofermentation were observed under glucose-limited condition as compared to glucose-excess condition, in S. bovis S1. Additionally, the inactivation of ccpA significantly affected the growth and end metabolites in both conditions. For the glycolytic intermediate, fructose 1,6-bisphosphate (FBP), the concentration significantly reduced at lower glucose conditions; its concentration decreased significantly in the ccpA mutant strain. Transcriptomic results showed that about 46% of the total genes were differentially transcribed between the wild-type strain and ccpA mutant strain grown in glucose-excess conditions; while only 12% genes were differentially transcribed in glucose-limited conditions. Different glucose concentrations led to the differential expression of 38% genes in the wild-type strain, while only half of these were differentially expressed in the ccpA-knockout strain. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the substrate glucose concentration significantly affected the gene expression in histidine metabolism, nitrogen metabolism, and some carbohydrate metabolism pathways. The deletion of ccpA affected several genes involved in carbohydrate metabolism, such as glycolysis, pyruvate metabolism, fructose and mannose metabolism, as well as in fatty acid biosynthesis pathways in bacteria grown in glucose-excess conditions; this effect was attenuated under glucose-limited conditions. Overall, these findings provide new information on gene transcription and metabolic mechanisms associated with substrate glucose concentration and validate the important role of CcpA in the regulation of carbon metabolism in S. bovis S1 at differential glucose availability.

13.
Animals (Basel) ; 10(11)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147878

RESUMO

The objective of this study was to evaluate the effects of partially substituting for conventional forage, Chinese wildrye (CW), with mulberry leaves (ML) on the growth, digestion, ruminal fermentation, blood metabolites, and meat quality of sheep in a 65-day feedlot study. Thirty-two four-month-old male small-tailed Han sheep (25.15 ± 1.03 kg) were randomly assigned to one of four treatments. The dietary treatments consisted of four proportions of ML (0, 8, 24, and 32%) as a substitute for CW (designated as ML0, ML8, ML24, and ML32, respectively). Rumen digesta and blood samples were collected at day 63 of the trial. Carcass traits were assessed after slaughter at the end of performance period. The results from this study revealed no differences in average daily bodyweight gain (ADG), feed conversion ratio (FCR), and final body weight (FBW) among treatments. The apparent digestibility of dry matter (DM), organic matter (OM), and acid detergent fiber (ADF) was higher in the sheep fed with ML than in those fed CW. The ML24 treatment had a higher digestibility of crude protein (CP) and ether extract (EE). There were no differences (p = 0.13) in ruminal pH values among the treatments. However, there was more microbial protein (p < 0.01) in ML24 and ML32 treatments than the ML0 treatment. Ruminal concentrations of acetate and butyrate were significantly different among treatments, although no difference in concentrations of total volatile fatty acid were found. Additionally, no differences were detected for serum parameters except blood urea nitrogen (BUN). No differences were observed for carcass weight (p = 0.62), dressing percentage (p = 0.31) or longissimus dorsi muscle (LM) area (p = 0.94) among treatments. However, intramuscular fat was higher in the ML24 treatment than in the ML0 treatment. (p < 0.01). There were higher pH values of the 24-h longissimus dorsi in the ML24 treatment than in the ML0 treatment. In addition, the saturated fatty acid (SFA) content was lower (p < 0.01) and the monounsaturated fatty acid (MUFA) content higher (p < 0.01) in the ML24 treatment than in the ML0 treatment. In conclusion, the partially substitution of mulberry leaves for Chinese wildrye in the diet of sheep had a beneficial influence on the growth performance, blood metabolites and carcass characteristics. The inclusion of 24% (air dry basis) mulberry leaf hay in the ration of sheep is recommended based on these findings.

14.
Animals (Basel) ; 10(1)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963945

RESUMO

ß-sitosterol (BSS) is a plant-derived natural bioactive compound, its cellular mechanism of anti-inflammatory activity has been proven recently. Little information is available regarding the application of BSS on ruminants under high grain diet. The objective of this study was to evaluate the effects of dietary BSS supplementation on inflammatory response, ruminal fermentation characteristics and the composition of the ruminal bacterial community under high grain diet. Eight rumen-cannulated Hu sheep (59.7 ± 4.8 kg of initial body weight) were randomly assigned into a replicated 4 × 4 Latin square design trial. Sheep were fed a high grain diet (non-fiber carbohydrate: neutral detergent fiber = 2.03) supplemented either with 0.25 (LBS), 0.5 (MBS), 1.0 (HBS) or without (CON) g BSS /kg dry matter diet. On day 21 of each period, rumen content samples were obtained at 6 h postfeeding, and blood samples were obtained before morning feeding. The data showed that compared with control group, Dietary BSS supplementation decreased serum concentrations of tumor necrosis factor, interleukin (IL)-6, and IL-1ß. The ruminal pH and acetate concentration for BSS treatment were improved, while concentration of propionate, butyrate and lactate was decreased. The result of Illumina MiSeq sequencing of 16S rRNA gene revealed that BSS addition can increase the proportion of Prevotella_1, Rikenellaceae_RC9_gut_group, Prevotella_7, and Selenomonas_1, and decrease the proportion of Lachnospiraceae_NK3A20_group. These results indicated that BSS attenuates high grain diet-induced inflammatory response and modifies ruminal fermentation. In addition, the BSS dietary supplementation at the level of 0.5 g/kg is recommended in sheep.

15.
PLoS One ; 13(10): e0206402, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379963

RESUMO

The traditional shipborne navigation system uses a two-dimensional electronic chart as a platform to integrate and control a variety of electronic navigation equipment information. It cannot intuitively restore the actual traffic environment or fundamentally improve the perception ability of the crew in poor visibility conditions. This paper proposes integrating three-dimensional simulations and real ship driving systems and presents research on "virtual-real" and "dynamic-static" ship navigation technology and equipment. In the proposed method, the hydrologic factors, topographic features, waterways, traffic dynamics, and ship driving information are effectively integrated, with a focus on achieving key advancements such as the integration of simulations and real ship driving as well as multi-source information fusion. A multi-angle, all-around, multi-level visual display for water traffic environments in poor visibility conditions is provided to enhance the ability of crews to perceive their traffic environments and thereby to provide auxiliary navigation for ships in complex weather conditions.


Assuntos
Meio Ambiente , Navios , Navegação Espacial , Hidrodinâmica , Modelos Teóricos , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa