Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
BMC Plant Biol ; 24(1): 432, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773389

RESUMO

The VIM (belonged to E3 ubiquitin ligase) gene family is crucial for plant growth, development, and stress responses, yet their role in salt stress remains unclear. We analyzed phylogenetic relationships, chromosomal localization, conserved motifs, gene structure, cis-acting elements, and gene expression patterns of the VIM gene family in four cotton varieties. Our findings reveal 29, 29, 17, and 14 members in Gossypium hirsutum (G.hirsutum), Gossypium barbadense (G.barbadense), Gossypium arboreum (G.arboreum), and Gossypium raimondii (G. raimondii), respectively, indicating the maturity and evolution of this gene family. motifs among GhVIMs genes were observed, along with the presence of stress-responsive, hormone-responsive, and growth-related elements in their promoter regions. Gene expression analysis showed varying patterns and tissue specificity of GhVIMs genes under abiotic stress. Silencing GhVIM28 via virus-induced gene silencing revealed its role as a salt-tolerant negative regulator. This work reveals a mechanism by which the VIM gene family in response to salt stress in cotton, identifying a potential negative regulator, GhVIM28, which could be targeted for enhancing salt tolerance in cotton. The objective of this study was to explore the evolutionary relationship of the VIM gene family and its potential function in salt stress tolerance, and provide important genetic resources for salt tolerance breeding of cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Salino , Gossypium/genética , Gossypium/fisiologia , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Genes de Plantas , Tolerância ao Sal/genética
2.
Plant Cell Rep ; 43(2): 58, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321189

RESUMO

KEY MESSAGE: Comprehensive analysis of Gossypium ATG8 family indicates that GhATG8f could improve salt tolerance of cotton by increasing SOD, POD and CAT activity and proline accumulation. In plants, autophagy is regulated by several genes that play important roles in initiating and controlling the process. ATG8, functioning as a protein similar to ubiquitin, is involved in crucial tasks throughout the autophagosome formation process. In this research, we conducted an extensive and all-encompassing investigation of 64 ATG8 genes across four varieties of cotton. According to the subcellular localization prediction results, 49 genes were found in the cytoplasm, 6 genes in the chloroplast, 1 gene in the peroxisome, 5 genes in the nucleus, and 3 genes in the extracellular region. Phylogenetic analysis categorized a total of 5 subfamilies containing sixty-four ATG8 genes. The expression of the majority of GhATG8 genes was induced by salt, drought, cold, and heat stresses, as revealed by RNA-seq and real-time PCR. Analysis of cis-elements in the promoters of GhATG8 genes revealed the predominant presence of responsive elements for plant hormones and abiotic stress, suggesting that GhATG8 genes might have significant functions in abiotic stress response. Furthermore, we additionally performed a gene interaction network analysis for the GhATG8 proteins. The salt stress resistance of cotton was reduced due to the downregulation of GhATG8f expression, resulting in decreased activity of CAT, SOD, and POD enzymes, as well as decreased fresh weight and proline accumulation. In summary, our research is the initial exploration of ATG8 gene components in cotton, providing a basis for future investigations into the regulatory mechanisms of ATG8 genes in autophagy and their response to abiotic stress.


Assuntos
Gossypium , Estresse Fisiológico , Gossypium/genética , Filogenia , Estresse Fisiológico/genética , Tolerância ao Sal/genética , Prolina/genética , Superóxido Dismutase/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Secas
3.
BMC Plant Biol ; 23(1): 330, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344795

RESUMO

BACKGROUND: Flooding is among the most severe abiotic stresses in plant growth and development. The mechanism of submergence tolerance of cotton in response to submergence stress is unknown. RESULTS: The transcriptome results showed that a total of 6,893 differentially expressed genes (DEGs) were discovered under submergence stress. Gene Ontology (GO) enrichment analysis showed that DEGs were involved in various stress or stimulus responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs related to plant hormone signal transduction, starch and sucrose metabolism, glycolysis and the biosynthesis of secondary metabolites were regulated by submergence stress. Eight DEGs related to ethylene signaling and 3 ethylene synthesis genes were identified in the hormone signal transduction. For respiratory metabolism, alcohol dehydrogenase (ADH, GH_A02G0728) and pyruvate decarboxylase (PDC, GH_D09G1778) were significantly upregulated but 6-phosphofructokinase (PFK, GH_D05G0280), phosphoglycerate kinase (PGK, GH_A01G0945 and GH_D01G0967) and sucrose synthase genes (SUS, GH_A06G0873 and GH_D06G0851) were significantly downregulated in the submergence treatment. Terpene biosynthetic pathway-related genes in the secondary metabolites were regulated in submergence stress. CONCLUSIONS: Regulation of terpene biosynthesis by respiratory metabolism may play a role in enhancing the tolerance of cotton to submergence under flooding. Our findings showed that the mevalonate pathway, which occurs in the cytoplasm of the terpenoid backbone biosynthesis pathway (ko00900), may be the main response to submergence stress.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Metabolismo dos Carboidratos/genética , Estresse Fisiológico/genética , Etilenos , Regulação da Expressão Gênica de Plantas
4.
BMC Plant Biol ; 23(1): 124, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869319

RESUMO

BACKGROUND: 2-oxoglutarate-dependent dioxygenase (2ODD) is the second largest family of oxidases involved in various oxygenation/hydroxylation reactions in plants. Many members in the family regulate gene transcription, nucleic acid modification/repair and secondary metabolic synthesis. The 2ODD family genes also function in the formation of abundant flavonoids during anthocyanin synthesis, thereby modulating plant development and response to diverse stresses. RESULTS: Totally, 379, 336, 205, and 204 2ODD genes were identified in G. barbadense (Gb), G. hirsutum (Gh), G. arboreum (Ga), and G. raimondii (Gb), respectively. The 336 2ODDs in G. hirsutum were divided into 15 subfamilies according to their putative functions. The structural features and functions of the 2ODD members in the same subfamily were similar and evolutionarily conserved. Tandem duplications and segmental duplications served essential roles in the large-scale expansion of the cotton 2ODD family. Ka/Ks values for most of the gene pairs were less than 1, indicating that 2ODD genes undergo strong purifying selection during evolution. Gh2ODDs might act in cotton responses to different abiotic stresses. GhLDOX3 and GhLDOX7, two members of the GhLDOX subfamily from Gh2ODDs, were significantly down-regulated in transcription under alkaline stress. Moreover, the expression of GhLDOX3 in leaves was significantly higher than that in other tissues. These results will provide valuable information for further understanding the evolution mechanisms and functions of the cotton 2ODD genes in the future. CONCLUSIONS: Genome-wide identification, structure, and evolution and expression analysis of 2ODD genes in Gossypium were carried out. The 2ODDs were highly conserved during evolutionary. Most Gh2ODDs were involved in the regulation of cotton responses to multiple abiotic stresses including salt, drought, hot, cold and alkali.


Assuntos
Álcalis , Gossypium , Secas , Flavonoides , Hidroxilação
5.
BMC Plant Biol ; 23(1): 245, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161359

RESUMO

BACKGROUND: Cotton is an important industrial crop and a pioneer crop for saline-alkali land restoration. However, the molecular mechanism underlying the cotton response to salt is not completely understood. METHODS: Here, we used metabolome data and transcriptome data to analyze the salt tolerance regulatory network of cotton and metabolic biomarkers. RESULTS: In this study, cotton was stressed at 400 m M NaCl for 0 h, 3 h, 24 h and 48 h. NaCl interfered with cotton gene expression, altered metabolite contents and affected plant growth. Metabolome analysis showed that NaCl stress increased the contents of amino acids, sugars and ABA, decreased the amount of vitamin and terpenoids. K-means cluster analysis of differentially expressed genes showed that the continuously up-regulated genes were mainly enriched in metabolic pathways such as flavonoid biosynthesis and amino acid biosynthesis. CONCLUSION: The four metabolites of cysteine (Cys), ABA(Abscisic acid), turanose, and isopentenyladenine-7-N-glucoside (IP7G) were consistently up-regulated under salt stress, which may indicate that they are potential candidates for cotton under salt stress biomarkers. Combined transcriptome and metabolome analysis revealed accumulation of cysteine, ABA, isopentenyladenine-7-N-glucoside and turanose were important for salt tolerance in cotton mechanism. These results will provide some metabolic insights and key metabolite biomarkers for salt stress tolerance, which may help to understanding of the metabolite response to salt stress in cotton and develop a foundation for cotton to grow better in saline soil.


Assuntos
Tolerância ao Sal , Transcriptoma , Tolerância ao Sal/genética , Cisteína , Cloreto de Sódio/farmacologia , Gossypium/genética , Biomarcadores
6.
BMC Plant Biol ; 23(1): 447, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736713

RESUMO

BACKGROUND: Inositol monophosphates (IMP) are key enzymes in the ascorbic acid (AsA) synthesis pathways, which play vital roles in regulating plant growth and development and stresses tolerance. To date, no comprehensive analysis of the expression profile of IMP genes and their functions under abiotic stress in cotton has been reported. RESULTS: In this study, the genetic characteristics, phylogenetic evolution, cis-acting elements and expression patterns of IMP gene family in cotton were systematically analyzed. A total of 28, 27, 13 and 13 IMP genes were identified in Gossypium hirsutum (G. hirsutum), Gossypium barbadense (G. barbadense), Gossypium arboreum (G. arboreum), and Gossypium raimondii (G. raimondii), respectively. Phylogenetic analysis showed that IMP family genes could cluster into 3 clades. Structure analysis of genes showed that GhIMP genes from the same subgroup had similar genetic structure and exon number. And most GhIMP family members contained hormone-related elements (abscisic acid response element, MeJA response element, gibberellin response element) and stress-related elements (low temperature response element, defense and stress response element, wound response element). After exogenous application of abscisic acid (ABA), some GhIMP genes containing ABA response elements positively responded to alkaline stress, indicating that ABA response elements played an important role in response to alkaline stress. qRT-PCR showed that most of GhIMP genes responded positively to alkaline stress, and GhIMP10D significantly upregulated under alkaline stress, with the highest up-regulated expression level. Virus-induced gene silencing (VIGS) experiment showed that compared with 156 plants, MDA content of pYL156:GhIMP10D plants increased significantly, while POD, SOD, chlorophyII and AsA content decreased significantly. CONCLUSIONS: This study provides a thorough overview of the IMP gene family and presents a new perspective on the evolution of this gene family. In particular, some IMP genes may be involved in alkaline stress tolerance regulation, and GhIMP10D showed high expression levels in leaves, stems and roots under alkaline stress, and preliminary functional verification of GhIMP10D gene suggested that it may regulate tolerance to alkaline stress by regulating the activity of antioxidant enzymes and the content of AsA. This study contributes to the subsequent broader discussion of the structure and alkaline resistance of IMP genes in cotton.


Assuntos
Antioxidantes , Ácido Ascórbico , Gossypium/genética , Ácido Abscísico , Filogenia , Inositol
7.
Purinergic Signal ; 19(1): 5-12, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34378078

RESUMO

Purinergic signalling adenosine and its A1 receptors have been demonstrated to get involved in the mechanism of acupuncture (needling therapy) analgesia. However, whether purinergic signalling would be responsible for the local analgesic effect of moxibustion therapy, the predominant member in acupuncture family procedures also could trigger analgesic effect on pain diseases, it still remains unclear. In this study, we applied moxibustion to generate analgesic effect on complete Freund's adjuvant (CFA)-induced inflammatory pain rats and detected the purine released from moxibustioned-acupoint by high-performance liquid chromatography (HPLC) approach. Intramuscular injection of ARL67156 into the acupoint Zusanli (ST36) to inhibit the breakdown of ATP showed the analgesic effect of moxibustion was increased while intramuscular injection of ATPase to speed up ATP hydrolysis caused a reduced moxibustion-induced analgesia. These data implied that purinergic ATP at the location of ST36 acupoint is a potentially beneficial factor for moxibustion-induced analgesia.


Assuntos
Moxibustão , Ratos , Animais , Ratos Sprague-Dawley , Modelos Animais de Doenças , Dor/tratamento farmacológico , Pontos de Acupuntura , Analgésicos , Trifosfato de Adenosina
8.
Ecotoxicol Environ Saf ; 267: 115655, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37924802

RESUMO

Anthocyanins belong to flavonoid secondary metabolites that act as plant pigments to give flowers and fruits different colors and as "scavengers" of reactive oxygen species (ROS) to protect plants from abiotic and biotic stresses. Few studies linked anthocyanins to alkaline resistance so far. In this study, anthocyanin synthesis-related gene leucoanthocyanidin dioxygenase (LDOX) was screened as a candidate gene to explore its relationship with alkali stress. The results found that pYL156: GhLDOX3 lines treated with 50 mM Na2CO3 (pH 11.11) for 24 h showed a significant increase in peroxidase (POD) activity, a decrease in total anthocyanin content and an increase in cyanidin content and a decrease in ROS accumulation compared to pYL156. The overexpressed (OE) lines, ldox mutant and wild-type (WT) lines in Arabidopsis were treated with 50 mM Na2CO3, 100 mM Na2CO3 and 150 mM Na2CO3 for 8 d, respectively. The wilted degree of the OE lines was more severe than WT lines, and less severe in the mutant lines in the 150 mM Na2CO3 treatment. After treatment, the expression levels of AtCAT and AtGSH genes related to antioxidant system in OE lines were significantly lower than in WT, and the expression levels of AtCAT and AtGSH in mutant lines were significantly higher than in WT. In conclusion, the above results suggest GhLDOX3 played a negative regulatory role in the mechanism of resisting Na2CO3 stress. Therefore, it can be considered in cotton breeding to improve the alkali tolerance of cotton by regulating the expression of related genes.


Assuntos
Antocianinas , Arabidopsis , Espécies Reativas de Oxigênio , Melhoramento Vegetal , Gossypium/genética , Álcalis , Antioxidantes
9.
Ecotoxicol Environ Saf ; 263: 115386, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598545

RESUMO

Cysteine, an early sulfur-containing compound in plants, is of significant importance in sulfur metabolism. CYS encodes cysteine synthetase that further catalyzes cysteine synthesis. In this investigation, CYS genes, identified from genome-wide analysis of Gossypium hirsutum bioinformatically, led to the discovery of GhCYS2 as the pivotal gene responsible for Cd2+ response. The silencing of GhCYS2 through virus-induced gene silencing (VIGS) rendered plants highly susceptible to Cd2+ stress. Silencing GhCYS2 in plants resulted in diminished levels of cysteine and glutathione while leading to the accumulation of MDA and ROS within cells, thereby impeding the regular process of photosynthesis. Consequently, the stomatal aperture of leaves decreased, epidermal cells underwent distortion and deformation, intercellular connections are dramatically disrupted, and fissures manifested between cells. Ultimately, these detrimental effected culminating in plant wilting and a substantial reduction in biomass. The association established between Cd2+ and cysteine in this investigation offered a valuable reference point for further inquiry into the functional and regulatory mechanisms of cysteine synthesis genes.


Assuntos
Cádmio , Gossypium , Gossypium/genética , Cádmio/toxicidade , Sobrevivência Celular , Cisteína , Fotossíntese/genética , Compostos de Enxofre , Enxofre
10.
Genomics ; 114(4): 110398, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675878

RESUMO

Ca2+ is an essential nutrient for plants and animals which plays an important role in plant signal transduction. Although the function and regulation of mechanism of Ca2+ in alleviating various biotic and abiotic stresses in plants have been studied deeply, the molecular mechanism to adapt high Ca2+ stress is still unclear in cotton. In this study, 103 cotton accessions were germinated under 200 mM CaCl2 stress, and two extremely Ca2+-resistant (Zhong 9807, R) and Ca2+-sensitive (CRI 50, S) genotypes were selected from 103 cotton accessions. The two accessions were then germinated for 5 days in 0 mM CaCl2 and 200 mM CaCl2 respectively, after which they were sampled for transcriptome sequencing. Morphological and physiological analyses suggested that PLR2 specifically expressed in R may enhance the ability of cotton to scavenge ROS by promoting the synthesis of SDG. In conclusion, this study proposed the adaptation mechanisms to response to the high Ca2+ stress in cotton which can contribute to improve the stress resistance of cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Desenvolvimento Sustentável , Butileno Glicóis , Cloreto de Cálcio/metabolismo , Gossypium/genética , Gossypium/metabolismo , Lignanas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética
11.
BMC Plant Biol ; 22(1): 194, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413814

RESUMO

BACKGROUND: Carboxylesterase (CXE) is a type of hydrolase with α/ß sheet hydrolase activity widely found in animals, plants and microorganisms, which plays an important role in plant growth, development and resistance to stress. RESULTS: A total of 72, 74, 39, 38 CXE genes were identified in Gossypium barbadense, Gossypium hirsutum, Gossypium raimondii and Gossypium arboreum, respectively. The gene structure and expression pattern were analyzed. The GBCXE genes were divided into 6 subgroups, and the chromosome distribution of members of the family were mapped. Analysis of promoter cis-acting elements showed that most GBCXE genes contain cis-elements related to plant hormones (GA, IAA) or abiotic stress. These 6 genes we screened out were expressed in the root, stem and leaf tissues. Combined with the heat map, GBCXE49 gene was selected for subcellular locate and confirmed that the protein was expressed in the cytoplasm. CONCLUSIONS: The collinearity analysis of the CXE genes of the four cotton species in this family indicated that tandem replication played an indispensable role in the evolution of the CXE gene family. The expression patterns of GBCXE gene under different stress treatments indicated that GBCXE gene may significantly participate in the response to salt and alkaline stress through different mechanisms. Through the virus-induced gene silencing technology (VIGS), it was speculated that GBCXE49 gene was involved in the response to alkaline stress in G. barbadense.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Carboxilesterase/genética , Carboxilesterase/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Gossypium/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
12.
BMC Plant Biol ; 22(1): 603, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539701

RESUMO

BACKGROUND: Abscisic acid (ABA) is an important stress hormone, the changes of abscisic acid content can alter plant tolerance to stress, abscisic acid is crucial for studying plant responses to abiotic stress. The abscisic acid aldehyde oxidase (AAO) plays a vital role in the final step in the synthesis of abscisic acid, therefore, understanding the function of AAO gene family is of great significance for plants to response to abiotic stresses. RESULT: In this study, 6, 8, 4 and 4 AAO genes were identified in four cotton species. According to the structural characteristics of genes and the traits of phylogenetic tree, we divided the AAO gene family into 4 clades. Gene structure analysis showed that the AAO gene family was relatively conservative. The analysis of cis-elements showed that most AAO genes contained cis-elements related to light response and plant hormones. Tissue specificity analysis under NaHCO3 stress showed that GhAAO2 gene was differentially expressed in both roots and leaves. After GhAAO2 gene silencing, the degree of wilting of seedlings was lighter than that of the control group, indicating that GhAAO2 could respond to NaHCO3 stress. CONCLUSIONS: In this study, the AAO gene family was analyzed by bioinformatics, the response of GhAAO gene to various abiotic stresses was preliminarily verified, and the function of the specifically expressed gene GhAAO2 was further verified. These findings provide valuable information for the study of potential candidate genes related to plant growth and stress.


Assuntos
Ácido Abscísico , Proteínas de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Gossypium/genética , Gossypium/metabolismo , Estresse Fisiológico/genética
13.
Biol Res ; 55(1): 4, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35063045

RESUMO

BACKGROUND: The internal NAD(P)H dehydrogenase (NDA) gene family was a member of the NAD(P)H dehydrogenase (ND) gene family, mainly involved in the non-phosphorylated respiratory pathways in mitochondria and played crucial roles in response to abiotic stress. METHODS: The whole genome identification, structure analysis and expression pattern of NDA gene family were conducted to analyze the NDA gene family. RESULTS: There were 51, 52, 26, and 24 NDA genes identified in G. hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. According to the structural characteristics of genes and traits of phylogenetic tree, we divided the NDA gene family into 8 clades. Gene structure analysis showed that the NDA gene family was relatively conservative. The four Gossypium species had good collinearity, and segmental duplication played an important role in the evolution of the NDA gene family. Analysis of cis-elements showed that most GhNDA genes contained cis-elements related to light response and plant hormones (ABA, MeJA and GA). The analysis of the expression patterns of GhNDA genes under different alkaline stress showed that GhNDA genes were actively involved in the response to alkaline stress, possibly through different molecular mechanisms. By analyzing the existing RNA-Seq data after alkaline stress, it was found that an NDA family gene GhNDA32 was expressed, and then theGhNDA32 was silenced by virus-induced gene silencing (VIGS). By observing the phenotype, we found that the wilting degree of silenced plants was much higher than that of the control plant after alkaline treatment, suggesting that GhNDA32 gene was involved in the response to alkaline stress. CONCLUSIONS: In this study, GhNDAs participated in response to alkaline stress, especially NaHCO3 stress. It was of great significance for the future research on the molecular mechanism of NDA gene family in responding to abiotic stresses.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Genoma de Planta , Gossypium/genética , Estrutura Molecular , Família Multigênica/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
14.
Genomics ; 113(3): 1157-1169, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33689783

RESUMO

Alkaline stress is one of the abiotic stresses limiting cotton production. Though RNA-Seq analyses, have been conducted to investigate genome-wide gene expression in response to alkaline stress in plants, the response of sodium bicarbonate (NaHCO3) stress-related genes in cotton has not been reported. To explore the mechanisms of cotton response to this alkaline stress, we used next-generation sequencing (NGS) technology to study transcriptional changes of cotton under NaHCO3 alkaline stress. A total of 18,230 and 11,177 differentially expressed genes (DEGs) were identified in cotton roots and leaves, respectively. Gene ontology (GO) analysis indicated the enrichment of DEGs involved in various stimuli or stress responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs associated with plant hormone signal transduction, amino acid biosynthesis, and biosynthesis of secondary metabolites were regulated in response to the NaHCO3 stress. We further analyzed genes enriched in secondary metabolic pathways and found that secondary metabolites were regulated to eliminate the reactive oxygen species (ROS) and improve the cotton tolerance to the NaHCO3 stress. In this study, we learned that the toxic effect of NaHCO3 was more profound than that of NaOH at the same pH. Thus, Na+, HCO3- and pH had a great impact on the growth of cotton plant. The novel biological pathways and candidate genes for the cotton tolerance to NaHCO3 stress identified from the study would be useful in the genetic improvement of the alkaline tolerance in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Bicarbonato de Sódio , Perfilação da Expressão Gênica , Gossypium/genética , Gossypium/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bicarbonato de Sódio/metabolismo , Bicarbonato de Sódio/farmacologia , Estresse Fisiológico/genética , Transcriptoma
15.
BMC Plant Biol ; 21(1): 386, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416873

RESUMO

BACKGROUND: The abiotic stress such as soil salinization and heavy metal toxicity has posed a major threat to sustainable crop production worldwide. Previous studies revealed that halophytes were supposed to tolerate other stress including heavy metal toxicity. Though HMAD (heavy-metal-associated domain) was reported to play various important functions in Arabidopsis, little is known in Gossypium. RESULTS: A total of 169 G. hirsutum genes were identified belonging to the HMAD gene family with the number of amino acids ranged from 56 to 1011. Additionally, 84, 76 and 159 HMAD genes were identified in each G. arboreum, G. raimondii and G. barbadense, respectively. The phylogenetic tree analysis showed that the HMAD gene family were divided into five classes, and 87 orthologs of HMAD genes were identified in four Gossypium species, such as genes Gh_D08G1950 and Gh_A08G2387 of G. hirsutum are orthologs of the Gorai.004G210800.1 and Cotton_A_25987 gene in G. raimondii and G. arboreum, respectively. In addition, 15 genes were lost during evolution. Furthermore, conserved sequence analysis found the conserved catalytic center containing an anion binding (CXXC) box. The HMAD gene family showed a differential expression levels among different tissues and developmental stages in G. hirsutum with the different cis-elements for abiotic stress. CONCLUSIONS: Current study provided important information about HMAD family genes under salt-stress in Gossypium genome, which would be useful to understand its putative functions in different species of cotton.


Assuntos
Adaptação Fisiológica/genética , Estudo de Associação Genômica Ampla , Genótipo , Gossypium/genética , Gossypium/fisiologia , Metais Pesados/toxicidade , Filogenia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Família Multigênica
16.
Biol Res ; 54(1): 36, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736526

RESUMO

BACKGROUND: Melatonin 2-hydroxylase (M2H) is the first enzyme in the catabolism pathway of melatonin, which catalyzes the production of 2-hydroxymelatonin (2-OHM) from melatonin. The content of 2-hydroxymelatonin in plants is much higher than that of melatonin. So M2H may be a key enzyme in the metabolic pathway of melatonin. METHOD: We conducted a systematic analysis of the M2H gene family in Gossypium hirsutum based on the whole genome sequence by integrating the structural characteristics, phylogenetic relationships, expression profile, and biological stress of the members of the Gossypium hirsutum M2H gene family. RESULT: We identified 265 M2H genes in the whole genome of Gossypium hirsutum, which were divided into 7 clades (clades I-VII) according to phylogenetic analysis. Most M2H members in each group had similar motif composition and gene structure characteristics. More than half of GhM2H members contain ABA-responsive elements and MeJA-responsive elements. Under different stress conditions, the expression levels of the gene changed, indicating that GhM2H members were involved in the regulation of abiotic stress. Some genes in the GhM2H family were involved in regulating melatonin levels in cotton under salt stress, and some genes were regulated by exogenous melatonin. CONCLUSION: This study is helpful to explore the function of GhM2H, the downstream metabolism gene of melatonin in cotton, and lay the foundation for better exploring the molecular mechanism of melatonin improving cotton's response to abiotic stress.


Assuntos
Gossypium , Melatonina , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Comput Struct Biotechnol J ; 23: 384-395, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38226314

RESUMO

Drought stress significantly affects crop productivity. Carotenoids are essential photosynthetic pigment for plants, bacteria, and algae, with signaling and antioxidant functions. Lutein is a crucial branch product in the carotenoid synthesis pathway, which effectively improves the stress tolerance of higher plants. lycopene cyclase, a central enzyme for lutein synthesis, holds great significance in regulating lutein production. This research establishes a correlation between lutein content and stress resistance by measuring the drought resistance and lutein content of various cotton materials. To identify which crucial genes are associated with lutein, the lycopene cyclase family (LCYs) was analyzed. The research found that LCYs form a highly conserved family divided into two subfamilies, LCY-ε (lycopene ε-cyclase) and LCY-ß (lycopene ß-cyclase). Most members of the LCY family contain photoresponsive elements and abscisic acid elements. qRT-PCR demonstrates showed that most genes responded positively to drought stress, and GhLCYε-3 was expressed significantly differently under drought stress. Virus-induced gene silencing (VIGS) assay showed that the content of GhLCYε-3 was significantly increased with MDA and PRO, and the contents of chlorophyll and lutein were significantly decreased in pYL156 plants. The decrease in GhLCYε-3 expression is speculated to lead to reduced lutein content in vivo, resulting in the accumulation of reactive oxygen species (ROS) and decreased drought tolerance. This research enriched the understanding of LCY gene family and lutein function, and provided a new reference for cotton planting in arid areas. Synopsis: Lycopene cyclase plays an important role in enhancing the ability of scavenging ROS and drought resistance of plants.

18.
Plant Physiol Biochem ; 203: 108001, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37688899

RESUMO

As a receptor for plant melatonin, CAND2/PMTR plays an important role in melatonin signaling. Most of the CANDs are membrane proteins and play indispensable roles in signal transduction. In this study, the CANDs from four cotton species were characterized, and the phylogenetic relationships, expression patterns, stress responses of cotton CANDs were analyzed by bioinformatics. Through the analysis of phylogenetic and protein structure, it was found that the CANDs in clade Ⅱ might function as cotton melatonin receptors, and most of the GhCANDs in clade Ⅱ were induced by melatonin. A putative cotton melatonin receptor, GhCAND2-D5, was functionally probed by gene silencing. The plants with silenced expression of this gene exhibited decreased salt tolerance. Protein interaction prediction identified that GhCAND2-D5 interacted with several membrane proteins and played an important role in melatonin signaling. This study provided a theoretical reference for further investigation of melatonin signaling in cotton.

19.
Front Plant Sci ; 14: 1246677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192697

RESUMO

A-galactosidases (AGALs), the oligosaccharide (RFO) catabolic genes of the raffinose family, play crucial roles in plant growth and development and in adversity stress. They can break down the non-reducing terminal galactose residues of glycolipids and sugar chains. In this study, the whole genome of AGALs was analyzed. Bioinformatics analysis was conducted to analyze members of the AGAL family in Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, and Gossypium raimondii. Meanwhile, RT-qPCR was carried out to analyze the expression patterns of AGAL family members in different tissues of terrestrial cotton. It was found that a series of environmental factors stimulated the expression of the GhAGAL3 gene. The function of GhAGAL3 was verified through virus-induced gene silencing (VIGS). As a result, GhAGAL3 gene silencing resulted in milder wilting of seedlings than the controls, and a significant increase in the raffinose content in cotton, indicating that GhAGAL3 responded to NaCl stress. The increase in raffinose content improved the tolerance of cotton. Findings in this study lay an important foundation for further research on the role of the GhAGAL3 gene family in the molecular mechanism of abiotic stress resistance in cotton.

20.
Front Genet ; 14: 1169104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351349

RESUMO

Identification, evolution, and expression patterns of BSK (BR signaling kinase) family genes revealed that BSKs participated in the response of cotton to abiotic stress and maintained the growth of cotton in extreme environment. The steroidal hormone brassinosteroids (BR) play important roles in different plant biological processes. This study focused on BSK which were downstream regulatory element of BR, in order to help to decipher the functions of BSKs genes from cotton on growth development and responses to abiotic stresses and lean the evolutionary relationship of cotton BSKs. BSKs are a class of plant-specific receptor-like cytoplasmic kinases involved in BR signal transduction. In this study, bioinformatics methods were used to identify the cotton BSKs gene family at the cotton genome level, and the gene structure, promoter elements, protein structure and properties, gene expression patterns and candidate interacting proteins were analyzed. In the present study, a total of 152 BSKs were identified by a genome-wide search in four cotton species and other 11 plant species, and phylogenetic analysis revealed three evolutionary clades. It was identified that BSKs contain typical PKc and TPR domains, the N-terminus is composed of extended chains and helical structures. Cotton BSKs genes show different expression patterns in different tissues and organs. The gene promoter contains numerous cis-acting elements induced by hormones and abiotic stress, the hormone ABA and Cold-inducing related elements have the highest count, indicating that cotton BSK genes may be regulated by various hormones at different growth stages and involved in the response regulation of cotton to various stresses. The expression analysis of BSKs in cotton showed that the expression levels of GhBSK06, GhBSK10, GhBSK21 and GhBSK24 were significantly increased with salt-inducing. This study is helpful to analyze the function of cotton BSKs genes in growth and development and in response to stress.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa