Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 76(3): 609-625, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30430199

RESUMO

Doxorubicin is one of the most effective drugs for the first-line treatment of high-grade osteosarcoma. Several studies have demonstrated that the major cause for doxorubicin resistance in osteosarcoma is the increased expression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). We recently identified a library of H2S-releasing doxorubicins (Sdox) that were more effective than doxorubicin against resistant osteosarcoma cells. Here we investigated the molecular mechanisms of the higher efficacy of Sdox in human osteosarcoma cells with increasing resistance to doxorubicin. Differently from doxorubicin, Sdox preferentially accumulated within the endoplasmic reticulum (ER), and its accumulation was only modestly reduced in Pgp-expressing osteosarcoma cells. The increase in doxorubicin resistance was paralleled by the progressive down-regulation of genes of ER-associated protein degradation/ER-quality control (ERAD/ERQC), two processes that remove misfolded proteins and protect cell from ER stress-triggered apoptosis. Sdox, that sulfhydrated ER-associated proteins and promoted their subsequent ubiquitination, up-regulated ERAD/ERQC genes. This up-regulation, however, was insufficient to protect cells, since Sdox activated ER stress-dependent apoptotic pathways, e.g., the C/EBP-ß LIP/CHOP/PUMA/caspases 12-7-3 axis. Sdox also promoted the sulfhydration of Pgp that was subsequently ubiquitinated: this process further enhanced Sdox retention and toxicity in resistant cells. Our work suggests that Sdox overcomes doxorubicin resistance in osteosarcoma cells by at least two mechanisms: it induces the degradation of Pgp following its sulfhydration and produces a huge misfolding of ER-associated proteins, triggering ER-dependent apoptosis. Sdox may represent the prototype of innovative anthracyclines, effective against doxorubicin-resistant/Pgp-expressing osteosarcoma cells by perturbing the ER functions.


Assuntos
Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Antibióticos Antineoplásicos/uso terapêutico , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Humanos , Immunoblotting , Concentração Inibidora 50 , Reação em Cadeia da Polimerase
2.
Expert Opin Emerg Drugs ; 20(3): 495-514, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26021401

RESUMO

INTRODUCTION: Osteosarcoma (OS), the most common primary malignant bone tumor, is currently treated with pre- and postoperative chemotherapy in association with the surgical removal of the tumor. Conventional treatments allow to cure about 60 - 65% of patients with primary tumors and only 20 - 25% of patients with recurrent disease. New treatment approaches and drugs are therefore highly warranted to improve prognosis. AREAS COVERED: This review focuses on the therapeutic approaches that are under development or clinical evaluation in OS. Information was obtained from different and continuously updated data bases, as well as from literature searches, in which particular relevance was given to reports and reviews on new targeted therapies under clinical investigation in high-grade OS. EXPERT OPINION: OS is a heterogeneous tumor, with a great variability in treatment response between patients. It is therefore unlikely that a single therapeutic tool will be uniformly successful for all OS patients. This claims for the validation of new treatment approaches together with biologic/(pharmaco)genetic markers, which may select the most appropriate subgroup of patients for each treatment approach. Since some promising novel agents and treatment strategies are currently tested in Phase I/II/III clinical trials, we may hope that new therapies with superior efficacy and safety profiles will be identified in the next few years.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Neoplasias Ósseas/patologia , Neoplasias Ósseas/cirurgia , Terapia Combinada , Desenho de Fármacos , Humanos , Osteossarcoma/patologia , Osteossarcoma/cirurgia , Seleção de Pacientes , Prognóstico
3.
Invest New Drugs ; 32(6): 1167-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25193492

RESUMO

BACKGROUND: Polo-like kinase 1 (PLK1) has emerged as a prognostic factor in various neoplasms, but only scarce data have been reported for high-grade osteosarcoma (OS). In this study, we assessed PLK1 expression and the efficacy of PLK1 inhibitor NMS-P937 in OS. METHODS: PLK1 expression was assessed on 21 OS clinical samples and on a panel of human OS cell lines. In vitro efficacy of NMS-P937 was evaluated on nine drug-sensitive and six drug-resistant human OS cell lines, either as single agent or in combination with the drugs used in chemotherapy for OS. RESULTS: PLK1 expression was higher in OS clinical samples and cell lines compared to normal human tissue. A higher PLK1 expression at diagnosis appeared to be associated with an unfavourable clinical outcome. PLK1 silencing produced growth inhibition, cell cycle retardation and apoptosis induction in human OS cell lines. NMS-P937 proved to be highly active in both drug-sensitive and drug-resistant cell lines, with the only exception of ABCB1-overexpressing, Doxorubicin (DX)-resistant variants. However, in these cells, the association of NMS-P937 with DX was able to revert DX-resistance by negatively interfering with ABCB1 transport activity. NMS-P937 was also able to decrease clonogenic and migration ability of human OS cell lines. CONCLUSION: PLK1 can be proposed as a new candidate target for OS. Targeting PLK1 in OS with NMS-P937 in association with conventional chemotherapeutic drugs may be a new interesting therapeutic option, since this approach has proved to be active against drug resistant cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Proteínas de Ciclo Celular/antagonistas & inibidores , Osteossarcoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazóis/farmacologia , Quinazolinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Interações Medicamentosas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Quinase 1 Polo-Like
5.
Genes Chromosomes Cancer ; 48(4): 289-309, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19105235

RESUMO

Gene amplification and copy number changes play a pivotal role in malignant transformation and progression of human tumor cells by mediating the activation of genes and oncogenes, which are involved in many different cellular processes including development of drug resistance. Since doxorubicin (DX) and methotrexate (MTX) are the two most important drugs for high-grade osteosarcoma (OS) treatment, the aim of this study was to identify genes gained or amplified in six DX- and eight MTX-resistant variants of the human OS cell lines U-2OS and Saos-2, and to get insights into the mechanisms underlying the amplification processes. Comparative genomic hybridization techniques identified amplification of MDR1 in all six DX-resistant and of DHFR in three MTX-resistant U-2OS variants. In addition, progressive gain of MLL was detected in the four U-2OS variants with higher resistance levels either to DX or MTX, whereas gain of MYC was found in all Saos-2 MTX-resistant variants and the U-2OS variant with the highest resistance level to DX. Fluorescent in situ hybridization revealed that MDR1 was amplified in U-2OS and Saos-2/DX-resistant variants manifested as homogeneously staining regions and double minutes, respectively. In U-2OS/MTX-resistant variants, DHFR was amplified in homogeneously staining regions, and was coamplified with MLL in relation to the increase of resistance to MTX. Gene amplification was associated with gene overexpression, whereas gene gain resulted in up-regulated gene expression. These results indicate that resistance to DX and MTX in human OS cell lines is a multigenic process involving gene copy number and expression changes.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes , Osteossarcoma/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Doxorrubicina/farmacologia , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Genes myc , Histona-Lisina N-Metiltransferase , Humanos , Hibridização in Situ Fluorescente , Metotrexato/farmacologia , Proteína de Leucina Linfoide-Mieloide/genética , Análise de Sequência com Séries de Oligonucleotídeos , Osteossarcoma/metabolismo , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
6.
Front Oncol ; 10: 331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211337

RESUMO

Treatment of high-grade osteosarcoma, the most common malignant tumor of bone, is largely based on administration of cisplatin and other DNA damaging drugs. Altered DNA repair mechanisms may thus significantly impact on either response or resistance to chemotherapy. In this study, by using a panel of human osteosarcoma cell lines, either sensitive or resistant to cisplatin, we assessed the value as candidate therapeutic targets of DNA repair-related factors belonging to the nucleotide excision repair (NER) or base excision repair (BER) pathways, as well as of a group of 18 kinases, which expression was higher in cisplatin-resistant variants compared to their parental cell lines and may be indirectly involved in DNA repair. The causal involvement of these factors in cisplatin resistance of human osteosarcoma cells was validated through gene silencing approaches and in vitro reversal of CDDP resistance. This approach highlighted a subgroup of genes, which value as promising candidate therapeutic targets was further confirmed by protein expression analyses. The in vitro activity of 15 inhibitor drugs against either these genes or their pathways was then analyzed, in order to identify the most active ones in terms of inherent activity and ability to overcome cisplatin resistance. NSC130813 (NERI02; F06) and triptolide, both targeting NER factors, proved to be the two most active agents, without evidence of cross-resistance with cisplatin. Combined in vitro treatments showed that NSC130813 and triptolide, when administered together with cisplatin, were able to improve its efficacy in both drug-sensitive and resistant osteosarcoma cells. This evidence may indicate an interesting therapeutic future option for treatment of osteosarcoma patients who present reduced responsiveness to cisplatin, even if possible effects of additive collateral toxicities must be carefully considered. Moreover, our study also showed that targeting protein kinases belonging to the mitogen-activated protein kinase (MAPK) or fibroblast growth factor receptor (FGFR) pathways might indicate new promising therapeutic perspectives in osteosarcoma, demanding for additional investigation.

7.
Expert Opin Drug Metab Toxicol ; 13(3): 245-257, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27758143

RESUMO

INTRODUCTION: Antifolates are structural analogs of folates, which have been used as antitumor drugs for more than 60 years. The antifolate drug most commonly used for treating human tumors is methotrexate (MTX), which is utilized widely in first-line treatment protocols of high-grade osteosarcoma (HGOS). In addition to MTX, two other antifolates, trimetrexate and pemetrexed, have been tested in clinical settings for second-line treatment of recurrent HGOS with patients unfortunately showing modest activity. Areas covered: There is clinical evidence which suggsest that, like other chemotherapeutic agents, not all HGOS patients are equally responsive to antifolates and do not have the same susceptibility to experience adverse drug-related toxicities. Here, we summarize the pharmacogenomic information reported so far for genes involved in antifolate metabolism and transport and in MTX-related toxicity in HGOS patients. Expert opinion: Identification and validation of genetic biomarkers that significantly impact clinical antifolate treatment response and related toxicity may provide the basis for a future treatment modulation based on the pharmacogenetic and pharmacogenomic features of HGOS patients.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Farmacogenética , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/uso terapêutico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Antagonistas do Ácido Fólico/efeitos adversos , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Metotrexato/efeitos adversos , Metotrexato/uso terapêutico , Gradação de Tumores , Osteossarcoma/genética , Osteossarcoma/patologia , Pemetrexede/efeitos adversos , Pemetrexede/uso terapêutico , Trimetrexato/efeitos adversos , Trimetrexato/uso terapêutico
8.
PLoS One ; 11(11): e0166233, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898692

RESUMO

Cyclin-dependent kinase 2 (CDK2) has been reported to be essential for cell proliferation in several human tumours and it has been suggested as an appropriate target to be considered in order to enhance the efficacy of treatment regimens based on the use of DNA damaging drugs. We evaluated the clinical impact of CDK2 overexpression on a series of 21 high-grade osteosarcoma (OS) samples profiled by using cDNA microarrays. We also assessed the in vitro efficacy of the CDKs inhibitor roscovitine in a panel of drug-sensitive and drug-resistant human OS cell lines. OS tumour samples showed an inherent overexpression of CDK2, and high expression levels at diagnosis of this kinase appeared to negatively impact on clinical outcome. CDK2 expression also proved to be relevant for in vitro OS cells growth. These findings indicated CDK2 as a promising candidate therapeutic marker for OS and therefore we assessed the efficacy of the CDKs-inhibitor roscovitine in both drug-sensitive and -resistant OS cell lines. All cell lines resulted to be responsive to roscovitine, which was also able to increase the activity of cisplatin and doxorubicin, the two most active DNA damaging drugs used in OS chemotherapy. Our results indicated that combined treatment with conventional OS chemotherapeutic drugs and roscovitine may represent a new candidate intervention approach, which may be considered to enhance tumour cell sensitivity to DNA damaging drugs.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Dano ao DNA , Terapia de Alvo Molecular , Osteossarcoma/patologia , Purinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/deficiência , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Roscovitina
9.
Pharmacogenomics ; 17(18): 2097-2114, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27883291

RESUMO

Second-line treatment of high-grade osteosarcoma (HGOS) patients is based on different approaches and chemotherapy protocols, which are not yet standardized. Although several drugs have been used in HGOS second-line protocols, none of them has provided fully satisfactory results and the role of rescue chemotherapy is not well defined yet. This article focuses on the drugs that have most frequently been used for second-line treatment of HGOS, highlighting the present knowledge on their mechanisms of action and resistance and on gene polymorphisms with possible impact on treatment sensitivity or toxicity. In the near future, validation of the so far identified candidate genetic biomarkers may constitute the basis for tailoring treatment by taking the patients' genetic background into account.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/genética , Humanos , Recidiva Local de Neoplasia/genética , Osteossarcoma/genética , Farmacogenética
10.
J Med Chem ; 59(10): 4881-9, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27120394

RESUMO

Doxorubicin (DOXO) is one of the most effective antineoplastic agents in clinical practice. Its use is limited by acute and chronic side effects, in particular by its cardiotoxicity and by the rapid development of resistance to it. As part of a program aimed at developing new DOXO derivatives endowed with reduced cardiotoxicity, and active against DOXO-resistant tumor cells, a series of H2S-releasing DOXOs (H2S-DOXOs) were obtained by combining DOXO with appropriate H2S donor substructures. The resulting compounds were studied on H9c2 cardiomyocytes and in DOXO-sensitive U-2OS osteosarcoma cells, as well as in related cell variants with increasing degrees of DOXO-resistance. Differently from DOXO, most of the products were not toxic at 5 µM concentration on H9c2 cells. A few of them triggered high activity on the cancer cells. H2S-DOXOs 10 and 11 emerged as the most interesting members of the series. The capacity of 10 to impair Pgp transporter is also discussed.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Sulfeto de Hidrogênio/farmacologia , Estrutura Molecular , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
11.
Curr Cancer Drug Targets ; 16(3): 261-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26548759

RESUMO

Clinical treatment response achievable with conventional chemotherapy in high-grade osteosarcoma (OS) is severely limited by the presence of intrinsic or acquired drug resistance, which in previous studies has been mainly addressed for overexpression of ABCB1 (MDR1/P-glycoprotein). This study was aimed to estimate the impact on OS drug resistance of a group of ATP binding cassette (ABC) transporters, which in other human tumors have been associated with unresponsiveness to the drugs that represent the backbone of multidrug treatment regimens for OS (doxorubicin, methotrexate, cisplatin). By using a group of 6 drug-sensitive and 20 drug-resistant human OS cell lines, the most relevant transporter which proved to be associated with the degree of drug resistance in OS cells, in addition to ABCB1, was ABCC1. We therefore evaluated the in vitro activity of the orally administrable ABCB1/ABCC1 inhibitor CBT-1(®) (Tetrandrine, NSC-77037). We found that in our OS cell lines this agent was able to revert the ABCB1/ABCC1-mediated resistance against doxorubicin, as well as against the drugs used in second-line OS treatments that are substrates of these transporters (taxotere, etoposide, vinorelbine). Our findings indicated that inhibiting ABCB1 and ABCC1 with CBT-1(®), used in association with conventional chemotherapeutic drugs, may become an interesting new therapeutic option for unresponsive or relapsed OS patients.


Assuntos
Benzilisoquinolinas/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Osteossarcoma/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Citometria de Fluxo , Imunofluorescência , Humanos , Microscopia de Fluorescência , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Células Tumorais Cultivadas
12.
Mol Cancer Ther ; 15(11): 2640-2652, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27466354

RESUMO

Doxorubicin is one of the leading drugs for osteosarcoma standard chemotherapy. A total of 40% to 45% of high-grade osteosarcoma patients are unresponsive, or only partially responsive, to doxorubicin (Dox), due to the overexpression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). The aim of this work is to improve Dox-based regimens in resistant osteosarcomas. We used a chemically modified mitochondria-targeted Dox (mtDox) against Pgp-overexpressing osteosarcomas with increased resistance to Dox. Unlike Dox, mtDox accumulated at significant levels intracellularly, exerted cytotoxic activity, and induced necrotic and immunogenic cell death in Dox-resistant/Pgp-overexpressing cells, fully reproducing the activities exerted by anthracyclines in drug-sensitive tumors. mtDox reduced tumor growth and cell proliferation, increased apoptosis, primed tumor cells for recognition by the host immune system, and was less cardiotoxic than Dox in preclinical models of drug-resistant osteosarcoma. The increase in Dox resistance was paralleled by a progressive upregulation of mitochondrial metabolism. By widely modulating the expression of mitochondria-related genes, mtDox decreased mitochondrial biogenesis, the import of proteins and metabolites within mitochondria, mitochondrial metabolism, and the synthesis of ATP. These events were paralleled by increased reactive oxygen species production, mitochondrial depolarization, and mitochondria-dependent apoptosis in resistant osteosarcoma cells, where Dox was completely ineffective. We propose mtDox as a new effective agent with a safer toxicity profile compared with Dox that may be effective for the treatment of Dox-resistant/Pgp-positive osteosarcoma patients, who strongly need alternative and innovative treatment strategies. Mol Cancer Ther; 15(11); 2640-52. ©2016 AACR.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Mitocôndrias/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Metabolismo Energético/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncotarget ; 7(38): 61970-61987, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27566557

RESUMO

This study aimed to identify associations between germline polymorphisms and risk of high-grade osteosarcoma (HGOS) development, event-free survival (EFS) and toxicity in HGOS patients treated with neo-adjuvant chemotherapy and surgery.Germline polymorphisms of 31 genes known to be relevant for transport or metabolism of all four drugs used in HGOS chemotherapy (methotrexate, doxorubicin, cisplatin and ifosfamide) were genotyped in 196 patients with HGOS and in 470 healthy age and gender-matched controls. Of these 196 HGOS patients, a homogeneously treated group of 126 patients was considered for survival analyses (survival cohort). For 57 of these, treatment-related toxicity data were available (toxicity cohort).Eleven polymorphisms were associated with increased risk of developing HGOS (p < 0.05). The distribution of polymorphisms in patients was characterized by a higher Shannon entropy. In the survival cohort (n = 126, median follow-up = 126 months), genotypes of ABCC2_1249A/G, GGH_452T/C, TP53_IVS2+38G/C and CYP2B6*6 were associated with EFS (p < 0.05). In the toxicity cohort (n = 57), genotypes of ABCB1_1236T/C, ABCC2_1249A/G, ABCC2_3972A/G, ERCC1_8092T/G, XPD_23591A/G, XRCC3_18067T/C, MTHFR_1298A/C and GGH_16T/C were associated with elevated risk for toxicity development (p < 0.05).The results obtained in this retrospective study indicate that the aforementioned germline polymorphisms significantly impact on the risk of HGOS development, EFS and the occurrence of chemotherapy-related toxicity. These findings should be prospectively validated with the aim of optimizing and tailoring HGOS treatment in the near future.


Assuntos
Neoplasias Ósseas/genética , Osteossarcoma/genética , Polimorfismo Genético , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Criança , Cisplatino/administração & dosagem , Estudos de Coortes , Intervalo Livre de Doença , Doxorrubicina/administração & dosagem , Feminino , Genótipo , Humanos , Ifosfamida/administração & dosagem , Itália , Masculino , Metotrexato/administração & dosagem , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , Terapia Neoadjuvante , Metástase Neoplásica , Resultado do Tratamento , Adulto Jovem , gama-Glutamil Hidrolase/genética
14.
Anal Cell Pathol (Amst) ; 34(3): 131-45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21673434

RESUMO

Recent studies have indicated that targeting glutathione-S-transferase (GST) isoenzymes may be a promising novel strategy to improve the efficacy of conventional chemotherapy in the three most common musculoskeletal tumours: osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma. By using a panel of 15 drug-sensitive and drug-resistant human osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma cell lines, the efficay of the GST-targeting agent 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) has been assessed and related to GST isoenzymes expression (namely GSTP1, GSTA1, GSTM1, and MGST). NBDHEX showed a relevant in vitro activity on all cell lines, including the drug-resistant ones and those with higher GSTs levels. The in vitro activity of NBDHEX was mostly related to cytostatic effects, with a less evident apoptotic induction. NBDHEX positively interacted with doxorubicin, vincristine, cisplatin but showed antagonistic effects with methotrexate. In vivo studies confirmed the cytostatic efficay of NBDHEX and its positive interaction with vincristine in Ewing's sarcoma cells, and also indicated a positive effect against the metastatisation of osteosarcoma cells. The whole body of evidence found in this study indicated that targeting GSTs in osteosarcoma, Ewing's sarcoma and rhabdomyosarcoma may be an interesting new therapeutic option, which can be considered for patients who are scarcely responsive to conventional regimens.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Glutationa Transferase/antagonistas & inibidores , Neoplasias Musculares/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Sarcoma/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Interações Medicamentosas , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/administração & dosagem , Glutationa Transferase/metabolismo , Humanos , Isoenzimas , Metotrexato/administração & dosagem , Camundongos , Camundongos Nus , Neoplasias Musculares/enzimologia , Neoplasias Musculares/mortalidade , Neoplasias Musculares/patologia , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Oxidiazóis/administração & dosagem , Sarcoma/enzimologia , Sarcoma/mortalidade , Sarcoma/secundário , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Vincristina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa